Mike 是伯明翰大学的副教授兼航空航天项目副主任。作为一名特许工程师和特许人体工程学/人为因素专家,Mike 对复杂的“人在回路”系统有着独特的见解。他是皇家航空学会会员、特许人体工程学和人为因素协会会员和飞行测试工程师协会高级会员,在布鲁内尔大学获得飞行安全博士学位。Mike 拥有行业背景,在 Westland Helicopters 完成了技术员学徒期,现在将时间分配在研究、咨询和教学活动之间。他专攻人为因素、飞行动力学、飞行测试、飞行模拟和建模,研究兴趣包括飞行失控、人类自主团队和 FDM/FOQA。
摘要 —.通过收集飞行员眼球运动的数据,可以监控飞行员在未来飞行中的操作,以发现潜在的事故。在本文中,我们设计了一种集成眼动追踪设备的新型SVS系统,该系统能够实现以下功能:1)一种能够从飞行员眼球运动中学习并预加载或渲染各种分辨率的地形数据的新方法,以便通过了解飞行员感兴趣的区域来提高地形显示的质量。2)一种可以通过分析来自SVS的航空信息和来自眼动追踪设备的眼球运动来检测危险操作的警告机制,以防止误操作或人为事故。用户研究和实验表明,所提出的SVS-Eyetracking系统工作有效,能够避免飞行模拟中因疲劳引起的潜在风险。
的努力。这代表了开发和飞行测试新型或改装飞机的新范例,如图所示。1.学飞用飞行中应用的实时方法取代了传统的地面测试和分析。主要收益是使用快速自适应机载流程进行建模、控制和制导,大大提高了飞机开发和飞行测试的效率,这些流程普遍适用且全球有效。学飞概念是一种快速飞机原型设计和测试的支持技术,但也应用于故障检测、自学飞行器、飞行包线保护、快速高效飞行测试、无人机安全可靠的飞行操作,以及从飞行数据快速生成或更新气动模型以进行高保真飞行模拟等领域。学习飞行概念的一个关键组成部分是基于
强化学习 (RL) 是一个快速发展的研究领域,由于 RL 与游戏任务的兼容性,它主要应用于视频游戏领域。AI Gym 已成为强化学习研究的黄金标准工具包。不幸的是,像 AI Gym 这样的工具包针对基准目的进行了高度优化,可能并不总是适合现实世界类型的问题。此外,固定翼飞行模拟有特定要求,可能需要其他解决方案。在本文中,我们提出 QPlane 作为固定翼飞机 RL 训练的替代工具包。QPlane 的开发旨在创建一个用于固定翼飞机模拟的 RL 工具包,该工具包可轻松修改以适应不同的场景。QPlane 可复制且灵活,易于实现高性能计算,并且模块化,可快速更换环境和算法。在本文中,我们将介绍和讨论 QPlane 的细节以及概念验证结果。
本文在安全与防御应用中使用亚轨道火箭件可以从中受益。论文描述了亚轨道火箭及其对现代科学,研究和技术发展的贡献。讨论了亚轨道火箭的历史观点及其在安全与防御角色中的应用。根据对公共可用来源的文献综述,列出和描述了在各个国家使用亚轨道火箭进行的,使用亚轨道火箭进行的选择重新搜索和开发活动,军事演习和防空系统的测试。该论文介绍了Oukasiewicz研究网络的功能 - 亚物质火箭领域的航空研究所。ILR-33 Amber 2K火箭的开发在Mach 4上达到飞行速度,并对达到100公里高度的飞行速度进行了评论,并评论了其在飞行模拟支持的安全和国防应用中的适用性。
设备(CS-FSTD(A))或直升机飞行模拟训练设备(CS-FSTD(H))11 详细说明了民用 FSTD 资格的民用法律和监管要求;其他等效的民用认证规范也可用。这些文件分别源自 ICAO Doc 9625 第 1 卷和第 2 卷,提供了根据培训要求确定资格标准的结构化方法。这些规范可帮助 SRO 确定 FSTD 的类别以及可在 FSTD 中进行的资格、评级和培训输出。这些文件为 QTG 的构建和保真度水平提供了指导。然而,该指导基于民用航空系统,旨在执行民用飞行任务,这些系统可能无法完全满足军事用途。因此,设备 QTG 可能需要包括特定的军事任务和能力,例如夜视设备视觉系统,以及调整以适合军事用途的验收标准和公差。
作者。Ian William Strachan 是英国皇家航空学会 (RAeS) 飞行模拟小组委员会 (FSG) 的前主席和现任成员。他曾担任国际扩展包线飞机训练委员会 (ICATEE) 成员,该委员会是在几起备受关注的致命航空事故发生后,由 RAeS FSG 主席创立,旨在减少商用航空运输 (CAT) 飞机的失速和失速事件。ICATEE 报告为失速预防和恢复训练 (UPRT) 提出了建议,并于 2013 年提交给国际民航组织。UPRT 现已被国际民航组织和世界各地的民航监管机构采用。结果,全飞行模拟器的操纵特性得到了显著改善,并且对关键操纵领域(包括失速和其他潜在危险事件)的训练也得到了更好的改善。
联系人:John Monk 南非 CSIR 航空系统能力专注于空气动力学分析、设计、开发和模拟、风洞测试、气动弹性服务、结构分析和飞机储备清关。设施包括高速、中速和低速风洞、水洞、级联测试设施、涡轮测试设施、UAS 集成实验室、模拟实验室和地面振动测试设施。典型活动包括无损检测、直升机结构和空气动力学技术、燃气涡轮发动机技术、空中武器流动和结构特性、储备运载和释放预测、计算流体动力学 (CFD)、国际地面振动测试 (GVT)、颤振分析和预测、颤振飞行测试软件和硬件系统、比实时任务模拟更快、实时飞行模拟、机械武器和储备集成以及飞机结构技术。
飞机设计本质上是一项多学科工作,在此过程中,多个工程师团队之间必须交换数据和信息,每个团队都具有特定领域的专业知识。管理协作组之间的数据传输、可能的翻译和存储非常复杂且容易出错。采用标准化、以数据为中心的方案来存储所有数据可提高一致性并降低误解和冲突的风险。为了有效地实现这一点,必须首先努力在分析模块和数据档案之间开发合适的接口。此外,设计过程的每个阶段对设计和分析工具的保真度和分辨率都有不同的要求。对于稳定性和控制分析以及飞行模拟,需要生成用于空气动力、力矩和导数的查找表。不同的飞行分析工具需要不同的表格/输入格式。例如,代尔夫特理工大学开发的飞行分析器和模拟器 PHALANX [ 1 – 4 ] 需要一组三维力和力矩系数表,每个控制通道单独作用。多保真气动建模旨在以最佳的计算资源分配覆盖整个飞行包线的飞行状态参数空间。这又需要一个标准化的、以数据为中心的方案来托管数据,可用于各种
AC-RASG-AFI-01 日期:2018 年 8 月 主题:失控预防和恢复训练 本咨询通告 (AC) 描述了飞机失控预防和恢复训练 (UPRT) 的推荐训练。本咨询通告的目标是为飞行员提供学术和飞行模拟训练设备 (FSTD) 训练的推荐做法和指导,以防止出现失控情况并确保对失控做出正确的恢复反应。本咨询通告是根据主要飞机制造商、航空运营商、培训组织、行业代表组织和 RASG-AFI 冠军为 LOC-I 制定的推荐做法创建的。虽然本咨询通告旨在指导航空运营商实施国际航空运营的要求,但鼓励所有飞机运营商、飞行员学校和培训中心实施 UPRT 并使用本指导,适用于进行培训的飞机类型。本咨询通告的核心原则包括: • 加强对模拟局限性的教练培训。 • 全面的飞行员空气动力学学术培训。 • 及早识别偏离预定飞行路径的情况。 • 通过提高手动操作技能预防失控。 • 整合机组资源管理的培训,包括针对飞行员监控的渐进式干预策略。