在基于物理的飞行动力学模拟中,描述和评估了双飞机平台 (DAP) 概念的基准配置,该模拟用于为期两个月的任务,作为佛罗里达中部低层平流层的通信中继,距离奥兰多市中心 150 英里。DAP 配置具有两个大型滑翔机式(翼展 130 英尺)无人机,它们通过一条可调节的长电缆连接(总可伸缩长度 3000 英尺),可利用可用的风切变有效地航行而无需推进。使用机载 LiDAR 风廓线仪预测风分布被发现是必要的,以使平台能够通过找到平台上足够的风切变来有效调整飞行条件以保持航行。与传统的太阳能飞机一样,该飞机从太阳能电池中获取电力,但当风切变过多时,它还会使用螺旋桨作为涡轮机来获取风能。 60,000 英尺附近长达一个月的大气剖面(间隔 3-5 分钟)来自卡纳维拉尔角 50 Mhz 多普勒雷达风廓线仪测量的存档数据,并用于 DAP 飞行模拟。对这些数据集的粗略评估表明,DAP 航行所需的风切变持续存在,这表明即使受到适度上升/下降率的限制,DAP 也可能航行超过 90% 的长达一个月的持续时间。DAP 的新型制导软件使用非线性约束优化技术来定义航点
学术设施的充足性和适当性 杰克逊维尔大学拥有充足且适合开展每项学术课程的设施。校园内共有 127 个空间,可为本科生和研究生提供个性化学习。这些空间定期用于我们的学术课程 - 包括教室、演讲厅、实验室和工作室。大学拥有化学、物理、生物、计算机科学、海洋科学、飞行模拟、贸易、护理、运动机能学、言语语言病理学和职业治疗等专业实验室设施。同样,它拥有众多艺术工作室、一个 400 个座位的剧院和一个较小的 350 个座位的剧院。通过大学系统安排所有用于课堂目的的专业实验室的使用。学术技术部门支持满足 21 世纪学生期望的学习环境,同时仍通过与教师导师的个人联系让学生参与主动学习。技术增强学习是指使用特定技术来改善学生的学习体验和所规定的学习成果的质量,无论课程授课方式是面对面、在线还是混合式。所有教室都拥有足够的技术资源,足以满足学校的使命,并定期更新以确保它们继续适应不断增长的教学需求。 JU 校园的每个教室都配有电脑、投影仪、扬声器和笔记本电脑连接。许多教室目前安装了其他技术,包括文档相机、灯光控制器、Crestron Air Medias 和 SMART 交互式触摸显示器。作为最近发行的债券的一部分,JU 在 2019 年夏季以约 200,000 美元的价格升级了 14 个教室的技术。到目前为止,该足迹已包括 359 个班级,共有 5,039 名学生。主要学术建筑概览
此呼叫解决了对地面研究平台的需求,这些平台复制了未来的探索太空飞行任务,正如NASA HRP人为因素行为绩效元素或HFBP的持续研究所强调的那样。需要进行研究以表征和减轻相对于未来的月球任务和火星任务的个人和团队行为健康以及绩效成果;因此,需要准确反映未来太空飞行方案的平台(即类似物)。提案为解决长期空间任务的独特挑战的模拟环境的开发,适应和/或操作而建立创新的方法。研究重点未来的任务将超出当前的LEO能力,要求机组人员面临延长的禁闭时间,并且由于这些预期任务的地球距离距离地球距离很大,因此在船员自治方面的极端环境暴露。取决于目标任务(例如月球长,火星)和研究目标,当前和/或将来的类似物将需要增强或修改以准确模拟这些特定任务条件的范围。这种招标的主要目的是培养提出新颖和相关的模拟设施的研究,或者对现有的设施进行修改,以模拟长期Lunar和Mars任务的独特挑战。这涵盖了对真实空间任务的环境,操作和心理忠诚,重点是解决人类的行为健康和绩效风险。新的模拟研究设施的发展可能构成实际和财务限制。对问题的描述与行为健康和以性能为中心的空间探索研究的最前沿相结合,需要一致的努力来确保这些环境准确模拟NASA设计参考任务中概述的特定特定特定特征(DRM)。 这需要对每种任务类型的独特需求进行准确的了解,并承诺促进模拟设施的能力准确地反映这些要求。 目标是增加研究平台,模拟和设施,以加快技术,策略和对策的开发,测试和验证。 这可能是一种更实用的方法,可以识别和/或修改与太空飞行环境共享一个或多个特征的现有研究平台或设施,例如孤立,约束和极端平台(ICE)或一个孤立的,隔离的,受限制的和受控的平台(ICC)。 某些模拟特征的增强可以加快研究进步,关键任务技术的验证,运营策略以及长期太空任务的人类绩效对策。 此外,确保足够的资金和机构支持对于太空飞行模拟研究的进步和可访问性至关重要,强调了统一承诺,以提高模拟研究平台的忠诚度,可访问性和有效性。 提议者被鼓励考虑不仅与设施改进有关的增强功能,而且要考虑整个研究任务的实施。对问题的描述与行为健康和以性能为中心的空间探索研究的最前沿相结合,需要一致的努力来确保这些环境准确模拟NASA设计参考任务中概述的特定特定特定特征(DRM)。这需要对每种任务类型的独特需求进行准确的了解,并承诺促进模拟设施的能力准确地反映这些要求。目标是增加研究平台,模拟和设施,以加快技术,策略和对策的开发,测试和验证。这可能是一种更实用的方法,可以识别和/或修改与太空飞行环境共享一个或多个特征的现有研究平台或设施,例如孤立,约束和极端平台(ICE)或一个孤立的,隔离的,受限制的和受控的平台(ICC)。某些模拟特征的增强可以加快研究进步,关键任务技术的验证,运营策略以及长期太空任务的人类绩效对策。此外,确保足够的资金和机构支持对于太空飞行模拟研究的进步和可访问性至关重要,强调了统一承诺,以提高模拟研究平台的忠诚度,可访问性和有效性。提议者被鼓励考虑不仅与设施改进有关的增强功能,而且要考虑整个研究任务的实施。研究感兴趣的领域目标模拟任务和设施设计:该提案范围应围绕模拟环境的开发和/或增强,这将有助于减轻与个人和团队行为健康和绩效相关的风险所需的研究。可以考虑与技术开发人员,跨学科研究团队以及学术或行业合作伙伴的合作,以汇总专业知识和资源。建议应描述使用资金的使用将如何帮助开发或修改其模拟/设施和基础设施,以解决人类研究路线图中概述的HFBP目标平台/风险的一个或多个。方法还可以解决增强其模拟或目标误差,模拟基础设施设计,场景发展或技术集成进行研究或测试的努力。
摘要 本文介绍了 FLEXOP H2020 EU 项目框架内无人驾驶实验飞机减速板的建模、系统识别、仿真和飞行测试。由于飞机配备了响应缓慢的喷气发动机,因此在加速飞机进行颤振测试后,需要使用减速板来增加减速,以便保持在当局批准的有限空域内进行飞行测试。减速板由伺服电机、开启机构和减速板控制面本身组成。在简要介绍了演示飞机、减速板设计和实验测试台后,本文参考了以前的工作,对建模和系统识别进行了深入描述。系统识别包括确定高度非线性(饱和和负载相关)伺服执行器动力学以及非线性气动和机械特性,包括刚度和惯性效应。相对于之前的工作,新的贡献是考虑了负载打开或关闭的统一伺服角速度极限模型,考虑了整个偏转和飞机空速范围的减速板法向力和阻力模型的详细构建和评估,提出了统一的气动-机械非线性模型,给出了减速板角度、动态压力和伺服扭矩之间的直接关系,以及基于传递函数的机构刚度和惯性效应建模。确定的伺服动力学模型包括系统延迟、内部饱和、前面提到的负载相关角速度极限模型和传递函数模型。基于考虑减速板整个开启角度和动态负载范围的试验台测量验证了伺服模型。还考虑了新的、未发表的测量结果,其中伺服负载随着伺服移动而逐渐增加,以在更现实的情况下验证模型。然后构建完整的减速板模型并在模拟中测试以检查实际行为。下一步,通过在软件在环 (SIL) Matlab 仿真中使用飞机的基线控制器飞行模拟测试轨迹,对集成到 FLEXOP 飞机非线性仿真模型中的减速板模型进行测试。首先,将独立的减速板仿真与 SIL 结果进行比较,以验证减速板模型与非线性飞机仿真的完美集成。最后,使用实际飞行数据来验证和更新减速板模型并显示减速板的有效性。然后比较有和没有空气制动器的减速时间,强调空气制动器在测试任务中的实用性。