2017–2019 硕士,航空航天工程,飞行动力学与控制,KN Toosi 理工大学。论文:基于博弈论的摄像机和飞行物体运动的综合控制算法,导师:J. Roshanian 教授 课程:先进控制、最优控制、非线性控制、博弈论、动态系统建模 2013–2016 学士,机械工程,固体力学,卡尚大学。论文:制作受人眼启发的机器人,导师:M. Irani rahaghi 博士 课程:自动控制与实验室、机器人技术与实验室、动态系统仿真与控制 2011–2013 学士,信息技术工程,伊斯法罕理工大学。四个学期后,我更换了专业和大学(未获得学位) 课程:计算机编程与实验室、高级编程与实验室、数字设计和实验室
低速设施中风洞流质量测量和评估的现代框架 随着测试的复杂性增加,对风洞测试测量精度的要求也越来越严格。在风洞测试时间减少和测试成本增加的环境下,重要的是在较长时间内建立、维护和统计控制风洞设施中测量链所有组件的精确校准和验证。本文介绍了在贝尔格莱德军事技术学院的 T-35 4.4 m × 3.2 m 低速风洞中建立和维护测量质量控制系统所做的努力。该设施测量质量的保证基于确保三个主要组成部分的质量:风洞测试部分的校准、所用仪器的校准以及标准风洞模型的定期测试。介绍了相关风洞校准测试的样本结果,并将其与其他设施的结果进行了比较。测试证实了该设施的整体质量良好,并且必须保持、定期检查和系统地记录所达到的质量水平。关键词:风洞流动质量;低速风洞;标准校准模型;AGARD-B;ONERA M4。1.简介 风洞测试是任何飞机设计和开发的重要组成部分。预测未来飞行物体的空气动力学行为和特性的通常做法是进行相对小规模模型的风洞测试。为了确保对风洞数据进行有意义的解释,必须了解和纠正影响结果的影响因素;修正后的数据应与来自不同风洞或自由空气情况的数据具有可比性,[1]-[9]。此外,最好采用或多或少标准的校准和测试程序,以使来自不同风洞的数据尽可能接近可比性。在测试模型的风洞结果可用于预测未来飞行物体的气动特性之前,必须确定模型支撑系统和非均匀气流条件的影响随着风洞试验对测量精度的要求越来越严格,试验的复杂性也随之增加,并且在风洞试验时间减少、试验成本不断上升的环境下,重要的是对风洞设施中测量链的所有组件进行准确的校准和验证,更重要的是,在较长时间内保持和统计控制 [10]。
我们解决这个问题的方法遵循两阶段流程:(1)自我运动估计和(2)检测和跟踪。这两个阶段都是全卷积神经网络,可以扩展到高分辨率输入。它们在 Amazon Prime Air 发布的标记数据集上进行训练,该数据集包含 330 多万张飞机、直升机、无人机和其他飞行物体的图像。我们还开发了自己的飞机数据收集系统,并设计了用于飞行中遭遇的定制视觉 DAA 有效载荷。通过对现实世界数据进行实证评估,我们的方法与两种基线检测和跟踪架构进行了比较,结果显示我们的方法更胜一筹。在 DAA 行业标准 (ASTM F3442/F3442M - 20) 的背景下分析我们的定量结果,我们还表明,所提出的方法可以满足某些类别无人机的视觉 DAA 监视要求,这些无人机的最低巡航速度为 60-90 节,最小转弯速率为 21-31 度/秒,最小爬升率为 250-500 英尺/分钟。
我们解决这个问题的方法遵循一个两阶段流程:(1)自我运动估计和(2)检测和跟踪。这两个阶段都是完全卷积神经网络,可以扩展到高分辨率输入。它们在 Amazon Prime Air 发布的标记数据集上进行训练,该数据集包含 330 多万张飞机、直升机、无人机和其他飞行物体的图像。我们还开发了自己的飞机数据收集系统,并设计了一个定制的基于视觉的 DAA 有效载荷,用于飞行中相遇。通过对现实世界数据进行实证评估,我们的方法与两种基线检测和跟踪架构进行了比较,结果显示我们的方法更胜一筹。在 DAA 行业标准 (ASTM F3442/F3442M - 20) 的背景下分析我们的定量结果,我们还表明,所提出的方法可以满足某些类别的无人机的视觉 DAA 监视要求,这些无人机的最低巡航速度为 60-90kts,最低转弯率为 21-31 度/秒,最低爬升率为 250-500 英尺/分钟。
摘要 - 无人机(或无人空中系统)的快速发展及其在城市地区的潜在部署带来了许多安全问题。一定程度的自动化对于确保在城市环境中安全有效执行的UAS任务很可能是必要的。在大量不合作,非交流的UA会在密集的城市地区飞行,自然而然地想到的分散和自动方法。在这种方法中,每个代理都会在建筑物之间导航,同时避免其他流量。orca(最佳的相互碰撞避免)是一种最新的机器人碰撞避免使用方法,可以用作检测并避免在板上UAS上进行逻辑。最初是为自动机器人的2D运动而设计的,需要进行一些适应才能以应用于城市环境中的飞行物体。特别是,ORCA是一种短期避免碰撞,不是为复杂的城市环境中的路径规划而设计的。在这项研究中,我们引入了一种混合方法,将Orca与A ∗路径平面算法相结合,并表明Orca- A ∗
入口问:哪些入口开放?什么时候开放?答:活动两天,4 号入口和行人入口均从 12:00 至 20:00 开放。问:只有一天对日本人开放吗?答:活动两天都向所有日本公民和 SOFA 人员开放。问:你们会检查身份证吗?答:是的,所有 16 岁以上的与会者都需要出示带照片的身份证件才能入场。请参考我们网站上的图片,了解需要携带哪些身份证件。问:我需要携带哪些文件?日本护照/驾驶执照/永久居留卡?答:请参考我们网站上的图片,了解需要携带哪些身份证件。问:禁止携带哪些物品? * 酒精 * 盒式刀 * 剃须刀型刀片 * 剑 * 气枪/枪支 * 冷却器 * 玻璃瓶 * 溜冰鞋 * 飞行物体(包括无人机) * 手提箱 * 烟花 * 动物(辅助犬除外) * 三轮车/自行车 * 椅子 * 天篷 * 横幅/标志 * 300 毫米或更大的相机镜头 * 激光笔 停车 问:我们可以在哪里停车(日本与会者)? 答:基地的航线上提供免费停车位。如果您选择通过行人门进入,请勿将车停在基地外的未经授权/住宅区。 问:我住在嘉手纳,我是否需要在车流中等待才能进入活动现场? 答:嘉手纳空军基地居民和 SOFA 人员可以享受免费班车服务,前往活动现场。请查看我们网站上的信息以了解取车地点。
讲师:布伦特·兰道(Brent Landau);代词:他,他,他的;电子邮件:bclandau@utexas.edu学期:2020年秋季课程描述:本课程研究了整个历史上人类文化的范围,使整个历史上的宗教和神话含义含义,首先是夜间的天空,并最终发现了外部空间和整个宇宙的发现。要考虑的主题可能包括:宗教文本和仪式中天体的描述和功能;占星术作为占卜工具的发展;对日食,流星,彗星,超新星和其他不寻常的天体现象的解释;天文学作为一门科学学科的演变以及宗教与其发展的积极和消极的相互作用;关于宇宙的开始,结束和程度的大爆炸和其他理论;身份不明的飞行物体和可能的解释的跨文化现象;是否存在外星人生活以及试图与之联系的伦理的问题;以及流行的科幻叙事的宗教维度,例如《星球大战》,《星际迷航》和其他人。课程编号:UGS 303唯一数字:61690,61695,61700(注意:唯一数字对应于您注册的讨论部分时间;请参阅下面的讨论部分以确定您的唯一数字是什么):在线:在线,同步;这意味着您将需要在一周内的现场会议和讨论部分进行固定时间进行缩放。链接到缩放课程会议,讨论部分和我的每周学生时间将发布在画布上的“缩放标签”下。由于可能出现在这些Zoom完整的课程会议时间:星期一和星期三从9:00-9:50am讨论部分时间(括号中的唯一数字):星期五从8:00-8:50am(61690);星期五从9:00-9:50am(61695);和星期五从10:00-10:50am(61700)的学生时间:也称为“办公时间”,这将是本课程的成员(以及只有本课程)的成员与我聊天或询问有关我们所涵盖的材料的任何问题的时期。