直甲板琐事 作者:Scott Smith 最初的 Essex 级舰船装有 16 根拦阻索和 5 道屏障。12 号拦阻索经常被拆除,因为它穿过了船尾飞机升降机。其中四根(13 号至 16 号)与屏障直接相邻,很少使用。使用较晚的拦阻索(8 号或 9 号)可能会使飞机撞上屏障。但是,屏障是由右舷走道上的操作员远程升起和降下的。当操作员在钩子钩住绳索的瞬间降下屏障时,许多飞机都“获救”。早期的 ESSEX 级舰船还在船头装有 11 根拦阻索和 3 道 Davis 屏障。有人希望飞机在船尾航行(20 节)时降落在船头上方。此功能已得到演示但从未使用过。船头的钢丝绳和护栏于 1944 年正式拆除。飞行甲板由 3 英寸厚的层压木板构成,木板覆盖在薄钢板上,并位于钢制飞机固定轨道之间。固定轨道之间的 11 块木板在战斗损坏后很容易更换。这种轻型结构让飞行下方的乘客有很多不满意的地方
对抗北方演习不仅增强了三国的联合互操作能力,使他们能够随时应对印度太平洋地区的自然灾害,而且也提高了达尔号和美国空军的联合能力。“达尔号的飞行甲板为美国空军飞行员提供了一个获得甲板着陆资格的机会平台,”该舰船长迈克尔·李上校说。“这项关键训练可能会对我们在该地区的联合响应产生直接影响。”船长说,除了实际执行着陆准备任务外,船上活动前的规划,以及信息交流、共享战术、技术和程序以及协调通信也同样重要。作为海上预置舰船中队 3 的一部分,达尔号在整个地区为包括空军在内的所有美国武装部队战略性地放置集装箱和托盘货物。这种能力可确保在需要的时间和地点交付关键物资,并使美国军队能够快速响应 HA/DR 工作。“预置有助于从自然灾害的毁灭性影响中恢复过来。 “MSC 和我们的公务员和合同海员完全有资格并随时准备支持任何需要完成的任务,”李说。“如果没有美国海员,物流就会停止,供应链就会断裂。”
0800-0900 海军人事长大会堂 Vista Point Forrestal 会议室 0900-1600 贸易展摊位 Vista Point 飞行甲板和中庭 0900-1000 ECRM 培训 Vista Point Coral Sea 会议室 0930-1030 PERS4/Detailers 简报 Vista Point Forrestal 会议室 1000-1100 eNavFit 培训 Vista Point Coral Sea 会议室 1030-1130 MyNAVY 职业中心/CPPA 培训 Vista Point Forrestal 会议室 1045-1145 海军人事长与水手共进午餐 海军基地厨房 1100-1200 MyNavy 辅导 Vista Point Coral Sea 会议室 1130-1230 海军一级军士长 Vista Point Forrestal 会议室 1200-1300 与中石油举行多元化、公平与包容性会议 Vista Point Coral Sea 会议室1230-1330 海军特种作战 DEVGRU 招募 Vista Point Forrestal 会议室 1300-1400 海军一级军士长 CPO 通话 Vista Point Coral Sea 会议室 1330-1500 LDO/CWO 培训简报 Vista Point Forrestal 会议室 1400-1500 与 CNP 举办的多元化、公平性和包容性会议 Vista Point Coral Sea 会议室 1500-1600 海军辅导员培训 Vista Point Forrestal 会议室
特色应用:不同任务中舰载机保障作业的动态调度研究涉及多种保障资源(可再生资源包括保障作业人员和保障设备,不可再生资源包括油料、氧气、氮气、液压、电力等),作业活动需满足串行和并行约束关系,多重约束(可再生资源约束、不可再生资源约束、作业空间约束)等复杂的调度过程。这些资源的有效协调可以描述为不确定环境下的多资源约束多项目调度问题(MRCMPSP)。本文建立了舰载机动态保障调度的整数规划数学模型,解决了非确定性多项式时间难(NP-hard)问题。针对不确定、动态的环境,受到预测控制技术中的滚动时域(RH)优化方法的启发,提出了一种周期性、事件驱动的滚动时域(RH)调度策略。 RH策略不仅降低了问题规模,而且在合理的计算时间内有效地调整了基线调度,避免了在动态飞行甲板环境下不必要的调度,实现了资源的有效分配。设计了双种群遗传算法(DPGA)来解决大规模调度问题。计算结果
特色应用:不同任务中舰载机保障作业的动态调度研究涉及多种保障资源(可再生资源包括保障作业人员和保障设备,不可再生资源包括油料、氧气、氮气、液压、电力等),作业活动需满足串行和并行约束关系,多重约束(可再生资源约束、不可再生资源约束、作业空间约束)等复杂的调度过程。这些资源的有效协调可以描述为不确定环境下的多资源约束多项目调度问题(MRCMPSP)。本文建立了舰载机动态保障调度的整数规划数学模型,解决了非确定性多项式时间难(NP-hard)问题。针对不确定、动态的环境,受到预测控制技术中的滚动时域(RH)优化方法的启发,提出了一种周期性、事件驱动的滚动时域(RH)调度策略。 RH策略不仅降低了问题规模,而且在合理的计算时间内有效地调整了基线调度,避免了在动态飞行甲板环境下不必要的调度,实现了资源的有效分配。设计了双种群遗传算法(DPGA)来解决大规模调度问题。计算结果
20022财年2023财年2024财年2024财年2024财政部2024年颁布的总统申请/ BLI BLI名称$ 2.485亿美元2.55亿美元预算标记2.2551 $ 2.551亿美元$ 2.69999亿美元$ 19.999亿美元的房屋+/-($ 000SS)($ 000S)($ 000S)($ 000S)($ 000S)($ 000S)($ 000S)($ 000S)($ 000S)(000S)(000S)(000S)(000S)(000S)(000S)(000年)(000S)($ 000S)($ 000S)($ 000S)。消防研究与安全7,136 7,136 7,722 7,722 0 b。推进和燃料系统3,000 3,000 6,374 6,374 0 c。高级材料 /结构安全14,720 14,720 2,526 2,526 0 d。飞机糖霜2,472 2,472 3,960 3,960 0 e。数字系统安全3,689 3,689 7,109 7,109 0 f。持续空气8,829 8,829 8,425 8,425 0 g。飞行甲板/维护/系统整合人为因素14,301 14,301 15,646 15,646 0 h。系统安全管理/终端区域安全7,000 9,252 9,349 9,349 0 i。空中交通管制/技术操作人为因素5,911 5,911 6,389 6,389 0 J。航空医学研究11,000 9,000 12,205 12,205 0 k。天气计划13,786 13,786 19,220 19,220 0
执行摘要 本研究旨在调查美国海军和海军陆战队人员在航母和两栖攻击舰上遇到的喷气发动机噪音问题,并提出减少现有和下一代战术喷气式飞机发动机噪音的措施。本研究的一项总体发现是工程质量数据的匮乏。不存在用于比较不同飞机或各种发动机之间发动机噪音的标准化发动机噪音数据,并且可用数据未将水手或海军陆战队员的听力损失与他们各自的噪音暴露环境相关联。此外,没有用于获取战术飞机发动机噪音数据的标准。尽管美国退伍军人事务部 (VA) 每年在听力损失案件上花费超过 10 亿美元,但没有数据将听力损失索赔与驾驶舱噪音暴露联系起来。大约 28% 的 VA 听力损失索赔来自海军部,但没有关于导致听力损失的环境的数据。飞行甲板噪音是一种严重的健康风险。海军飞行甲板上的噪音水平高达 150 多分贝,超过了目前可用的听力保护装置将噪音减弱到安全水平的能力,无法让我们的人员在高噪音环境中工作。从积极的一面来看,改进听力保护设备的开发正在取得重大进展,例如正在美国航空母舰德怀特·D·艾森豪威尔号 (CVN-69) 上进行操作评估的深插入式耳塞。虽然商用喷气式客机的噪音水平一直在下降,但战术喷气式飞机的噪音水平却没有下降。很有可能,随着这些发动机的速度和气流增加以产生额外的推力,战术喷气机的噪音水平也随之增加。也有例外,例如 1979 年最后一次部署的 RA-5C,据报道其噪音水平是海军所有战术喷气机中最高的。海军没有定期测量飞机噪音,也没有维护其飞机噪音水平的数据库。仅记录了有限的驾驶舱噪音测量,专家组无法确定驾驶舱的噪音水平是否在增加。从未对军用飞机的最大噪音水平提出过要求,如今国防部对超音速喷气发动机噪音的了解还不足以制定切合实际的最大噪音要求。这还需要国防部办公室的持续投资解决喷气发动机噪音问题没有单一的解决方案,但为了取得进展,需要确定国防部的降噪倡导者。国防部必须确定一位资深人士,他将是组织和集中精力降低喷气式飞机噪音工作的强力倡导者。解决方案将需要降低超音速喷气发动机的源噪音,这需要长期的研究计划来了解流动产生噪音的基本机制。这些基本机制目前还没有得到很好的理解,但如果完全理解,它们应该可以为降低超音速喷气噪音的新技术提供见解。
V-1 师在年初完成了非常成功的 TSTA I 和 11,随后进行了数月的舰队 CQ 和 CNATRA CQ,使舰队和新学员具备了航母操作资格。我们完成了出色的 COMPTUEX,获得了 ENTERPRISE 的蓝水认证。在海上航行期间,V-1 更换了超过 110,000 平方英尺的防滑垫,替换了在 ESRA 和 COMPTUEX 之间的演习期间执行的大约 10,000 次发射和回收后磨损的防滑垫。在三个星期内,ENTERPRISE 一直在进行 JTFEX 98,同时与 ENTERPRISE 战斗群的其他成员一起工作,完成额外训练。在短暂的 POM 期后,ENTERPRISE 出发前往 JTG 99-1 部署。不幸的是,1998 年 11 月 8 日晚上,在夜间航母资格认证期间,两架飞机在着陆区相撞。碰撞立即导致爆炸和起火。 ENTERPRISE 坠机与打捞小组立即做出反应,在最初撞击发生后的几秒钟内开始使用灭火剂。大火在大约 7 分钟内被扑灭。对相邻飞机的损坏仅限于那些已经着火的飞机。没有飞行甲板人员受伤。在沙漠之狐行动期间,V-1 通过规划和执行 33 架飞机的首次打击发射序列计划拉开了行动的序幕。通过与航空联队和其他部门的合作,100% 的计划出动都完成了。1998 年,坠机与打捞小组
uke.edu 摘要 — 基于代理的建模技术已用于航空航天领域的各种环境。对于这些模型,存在各种各样的潜在用户,他们拥有的领域知识范围从很少(例如休闲游戏玩家)到很高(例如学术或专业研究人员),每个人都有不同的兴趣和目标。这些模型既可以描述复杂系统的表示,有助于解释历史行为和结果,也可以帮助对未来系统架构进行前瞻性分析。因此,基于代理的模型的使用将特别有助于规划未来的无人系统。这种基于代理的模拟引擎的一个关键问题是创建一个交互环境的复杂性,该环境可以跨越用户专业知识差距并允许直观和有用的交互,同时保持信息的高保真度。为了实现一个可以跨越领域和建模知识差距的交互环境,我们建议将给定的基于代理的模拟的设置、管理和可视化提炼为认知上简单的组件,使具有不同程度的专业知识的用户能够有效地理解和管理模拟。这样的环境应该允许所有技能水平的用户建立各种模型和假设,并了解结果。为此,我们提出了一个交互设计框架,该框架建立在海军航空母舰甲板飞行甲板发射操作的现有基于代理的模型之上。在本文中,我们将讨论设计框架如何影响交互环境的设计,以及由此产生的交互环境如何涵盖代表不同主题专业知识水平的用户组。
uke.edu 摘要 — 基于代理的建模技术已用于航空航天领域的各种环境。对于这些模型,存在各种各样的潜在用户,他们拥有的领域知识范围从很少(例如休闲游戏玩家)到很高(例如学术或专业研究人员),每个人都有不同的兴趣和目标。这些模型既可以描述复杂系统的表示,有助于解释历史行为和结果,也可以帮助对未来系统架构进行前瞻性分析。因此,基于代理的模型的使用将特别有助于规划未来的无人系统。这种基于代理的模拟引擎的一个关键问题是创建一个交互环境的复杂性,该环境可以跨越用户专业知识差距并允许直观和有用的交互,同时保持信息的高保真度。为了实现一个可以跨越领域和建模知识差距的交互环境,我们建议将给定的基于代理的模拟的设置、管理和可视化提炼为认知上简单的组件,使具有不同程度的专业知识的用户能够有效地理解和管理模拟。这样的环境应该允许所有技能水平的用户建立各种模型和假设,并了解结果。为此,我们提出了一个交互设计框架,该框架建立在海军航空母舰甲板飞行甲板发射操作的现有基于代理的模型之上。在本文中,我们将讨论设计框架如何影响交互环境的设计,以及由此产生的交互环境如何涵盖代表不同主题专业知识水平的用户组。