*付款解决方案由 Dell Financial Services LLC 或其附属公司或指定方(“DFS”)为合格客户提供和服务。优惠可能在某些国家/地区不可用或有所不同。优惠如有更改,恕不另行通知,且取决于产品供应情况、适用法律、信贷批准、DFS 提供并接受的文件,并且可能受最低交易规模限制。优惠不适用于个人、家庭或家用。Dell Technologies 和 Dell Technologies 徽标是 Dell Inc. 的商标。与政府或公共实体的交易可能存在限制和其他要求。公平市场价值(“FMV”)租赁:在初始 FMV 租赁期结束时,承租人可以 1) 按当时的 FMV 购买设备,2) 续租或 3) 将设备退还给 DFS。
摘要:本研究论文的框架涉及一种称为“颤振”的现象,这是一种众所周知的动态气动弹性不稳定性,由结构振动和非定常气动力相互作用引起,振动水平可能引发较大振幅,最终导致飞机在几秒钟内发生灾难性故障。颤振预测和颤振清除是飞机设计、开发和认证过程中的主要问题。因此,认证必须保证飞机在整个飞行包线内没有颤振。在 FLEXOP(无颤振飞行包线扩展以提高经济性能)项目框架内,已经实施了一种频域中仅输出的操作模态参数估计算法,用于监测气动弹性模式的演变,从而几乎实时地监测颤振。因此,已经生成了 FLEXOP 飞机的集成气动弹性仿真模型。
低收入国家以资本飞行的形式出血是全球经济不平等的主要原因。每年,数万亿美元绕过贫困困扰的国家的饥饿的财政空间,而是前往由保密司法管辖区管辖的利润丰厚的海上银行帐户。本文将这种现象与全球金融体系的机构架构联系起来,并提供了因果证据表明,应国际金融组织的要求实施的结构调整计划扩大了这种资本飞行。特别是,通过使用工具变量隔离政策条件的外在变化,我们发现国际货币基金在开发环境中规定的贸易自由,金融部门改革和私有化措施大大增加了通过当前和资本账户交易发生的大幅度增加财务流出。因此,我们的发现记录了结构调整对当代全球不平等现象不足的方面所做的贡献。
慕尼黑,2025年2月21日 - 卫星发射服务公司Isar Aerospace正在为其首次测试飞行做准备,并成功完成了其发射车“ Spectrum”两个阶段的静态射击。首次航班将在挪威民航局(NCAA)批准和许可之后尽快从挪威的安德雅·太空港(AndøyaSpaceport)进行。2月14日,ISAR Aerospace的发射车“频谱”有资格参加测试飞行,完成了飞行前的测试操作,并进行了30秒的综合九级静态静态火灾测试,从而获得了飞行的发射车资格。第2阶段已在2024-Q3的静态火灾测试中有资格。“我们几乎已经准备好进行测试。我们需要的只是许可,” ISAR航空首席执行官兼联合创始人丹尼尔·梅茨勒“通过从欧洲大陆启用空间,我们为确保主权和韧性提供了关键的资源。关于第一次测试飞行,他补充说:“我为来自50多个国家的国际团队感到非常自豪。达到这个里程碑本身就是一个巨大的成功。虽然Spectrum已准备好进行首次测试飞行,但二和三航班的发射车已经在生产中。” ISAR Aerospace Will Industrialize启动车辆生产Isar Aerospace已建立了技术领导者,并通过完整的内部垂直整合,跨越设计,生产和测试和发射运营,开发了专有的知识“拥有'Spectrum'的整个价值链为我们提供了最大的灵活性和独立性,” Isar Aerospace CTO&联合创始人Josef Fleischmann说。“我们在内部开发,建造和测试几乎整个发射车,包括我们的'aquila'发动机。飞行将是数以万计的组成部分的首次集成测试。”“无论我们走多远,这次试飞都希望产生大量的数据和经验,我们可以应用于将来的任务。”测试飞行开始的最终准备工作 - 欧洲大陆航空航天的首次测试飞行将标志着欧洲大陆的轨道发射车的首次发射。团队成功完成了飞行前准备的所有里程碑,包括测试和接受所有内部开发的发动机,有效负载平整以及两个阶段的静态火灾测试。Spectrum首次测试飞行的发射期将被确定为NCAA许可程序的一部分。测试飞行将由ISAR Aerospace在挪威的AndøyaSpaceport的独家发布现场进行。
飞机着陆是飞行的最终阶段,飞机从 15 米的高度慢速飞行,着陆后完全停下来,然后在跑道上滑行 [4]。着陆是飞行中最困难的阶段,要求飞行员具备非常高的驾驶技能 [1]。着陆是通过减速并下降到跑道来完成的。减速是通过使用襟翼、起落架或减速板减少推力和/或产生更大阻力来实现的。飞行的起飞过程可分为两个主要阶段 - 加速和起飞。这两个阶段又由其他某些子阶段划分。航空工业的进步现已达到所有这些阶段都可以在没有飞行员参与的情况下进行的地步,即使用自动驾驶系统。在民航中,无人系统仍被谨慎使用,主要仅在水平飞行阶段使用,并且仍由机组人员控制。不过,主要是由经验丰富的飞行员执行着陆过程。由于着陆时所有动作的复杂性和危险性,根据统计,此阶段被认为是最危险的阶段 [2]。这项工作的目的是分析影响地面路径长度的因素,并开发一种系统,该系统可以在飞机着陆后完全自动停止飞机,或者至少帮助飞行员确定剩余的制动距离,以防止危险情况。开发的系统和方法将提供信息
!通过利用机器学习来帮助降低总拥有成本,从而最大程度地利用了车队电池健康!根据电池人群健康优化的反馈来从现场行为中学习老化因素!提供个人决定,使净资产净收入和提高车队经理的盈利能力以及总拥有成本
随着新的Shepard计划通过设计,构建,测试和操作获得经验,所学到的经验教训已并将继续应用于Blue Origin的轨道发射车New Glenn。这些课程在自主权,指导,垂直着陆建筑,强大而可节奏的液体发动机以及精益操作方面特别有益。New Glenn的可重复使用的第一阶段至少制定了25个任务,尽管早期操作专门用于有效载荷发射,但该车辆还采用驾驶人类所需的安全性和冗余进行了设计。新格伦(New Glenn)是专门建造的,可以将大量和质量提供给轨道,这是释放我们长期视野的关键 - 人们和重工业可以在太空中工作以保护地球,人类的蓝色起源。
讨论了使用定向能发射的探测器对附近恒星系统进行飞越调查的任务场景设计。使用固定发射基础设施发射多个探测器,在目标相遇和数据收集后下载科学数据。假设主要目标是以较小的数据延迟(从发射到完全恢复数据所用的时间)可靠地恢复大量收集的科学数据,结果表明存在一个有效边界,在给定延迟的情况下无法增加数据量,在给定数据量的情况下无法减少延迟。对于每次探测器发射,增加此边界上的数据量是通过增加探测器质量来实现的,这会导致探测器速度降低。因此,选择最高可行探测器速度通常无法实现数据量和延迟之间的有效权衡。沿着此边界,到完成数据下载所经过的总距离变化不大,这意味着下载时间大约是发射到目标传输时间的固定比例。由于探测器质量增加时推进时间更长,因此增加数据量会导致发射总能量消耗增加,但具有良好的规模经济效益。任何探测器技术的一个重要特征是将探测器质量与传输数据速率联系起来的缩放定律,因为这会影响有效边界的细节。