777 航空电子设备首次在商用运输中使用了集成模块化航空电子设备概念。主显示器、飞行管理、推力管理、控制维护、数据通信、飞机状态监控和飞行数据记录等功能在两个航空电子设备柜中实现,每个机柜都有八个线路可更换模块。四个输入/输出模块和四个核心处理器模块使用通用的硬件和软件架构。与联合系统相比,这种实现方式可减轻重量和功耗,同时提高可靠性、简化系统接口并改善故障隔离。新的多发射机数据总线 (ARINC 629) 允许增加所有系统之间的通信,从而提高功能性、可靠性、成本和重量。软件可在机上加载,以降低备件成本并允许更快地纳入功能改进。
777 航空电子设备首次在商用运输中使用了集成模块化航空电子设备概念。主显示器、飞行管理、推力管理、控制维护、数据通信、飞机状态监控和飞行数据记录等功能在两个航空电子设备柜中实现,每个机柜都有八个线路可更换模块。四个输入/输出模块和四个核心处理器模块使用通用的硬件和软件架构。与联合系统相比,这种实现方式可减轻重量和功耗,同时提高可靠性、简化系统接口并改善故障隔离。新的多发射机数据总线 (ARINC 629) 允许增加所有系统之间的通信,从而提高功能性、可靠性、成本和重量。软件可在机上加载,以降低备件成本并允许更快地纳入功能改进。
777 航空电子设备首次在商用运输中使用了集成模块化航空电子设备概念。主显示器、飞行管理、推力管理、控制维护、数据通信、飞机状态监控和飞行数据记录等功能在两个航空电子设备柜中实现,每个机柜都有八个线路可更换模块。四个输入/输出模块和四个核心处理器模块使用通用的硬件和软件架构。与联合系统相比,这种实现方式可减轻重量和功耗,同时提高可靠性、简化系统接口并改善故障隔离。新的多发射机数据总线 (ARINC 629) 允许增加所有系统之间的通信,从而提高功能性、可靠性、成本和重量。软件可在机上加载,以降低备件成本并允许更快地纳入功能改进。
2018 年 6 月 10 日,一架波音 737-800 客机计划从荷兰阿姆斯特丹史基浦机场飞往德国慕尼黑机场。机上有三名机组人员、四名客舱乘务员和 182 名乘客。根据空中交通管制 (ATC) 的许可,飞机计划从 09 号跑道起飞。当飞机抵达 09 号跑道附近时,ATC 询问是否可以从 N4 交叉口起飞;机组人员回答否决。由于风况和起飞质量接近最大起飞质量,飞机必须从跑道起点起飞,使用 N5 交叉口。相应的起飞数据被输入到飞行管理计算机 (FMC) 中。在滑行至跑道时,发现风况已发生足够变化,可以从 N4 交叉口起飞。使用 N4 交叉口使机组人员能够减少延误,因为飞机已经落后于时间表。
AAIB 航空事故调查处 AFS 自动飞行系统 agl 高于地面 AIP 航空信息出版物 amsl 高于平均海平面 AP 自动驾驶仪 AP 1 1 号自动驾驶仪 AP 2 2 号自动驾驶仪 ATC 空中交通管制 A/THR 自动油门 ATIS 自动终端信息系统 CAA 民航局 CDA 恒定下降角 CDU 控制显示单元 CFIT 可控飞行撞地 CMD 指挥模式 CRM 机组资源管理 CRS 航线 CVR 驾驶舱语音记录器 CWS 控制轮转向 DME 测距设备 EFIS 电子飞行信息 EGPWS 增强型 GPWS FAA 美国联邦航空管理局 FAF 最后进近定位点 FCOM 飞行操作手册 FCU 飞行控制面板 FD 飞行指引仪 FDR 飞行数据记录器 FL 飞行高度 FLC 飞行高度变化 FLTA 前视地形规避 FMA 飞行模式信号器 FMC 飞行管理计算机 FMS 飞行管理系统 FO 副驾驶 Fpm 英尺每分钟 ft 英尺
ATM – 假定温度法 CRM - 机组资源管理 CCD - 光标控制装置 CCS - 光标控制选择器 CVR - 驾驶舱语音记录器 CDU - 控制显示单元 CG - 重心 CG MAC% - 以 % 表示的 CG 平均气动弦 EAFR - 增强型机载飞行记录器 EICAS - 发动机指示和机组警报系统 EFB - 电子飞行包 FMC - 飞行管理计算机 固定降低率 – TO/TO1/TO2 FLAR - 飞行日志和飞机释放 HUD - 平视显示器 MFD - 多功能显示器 MFK - 多功能键盘 MCP - 模式控制面板 MAC - 平均气动线 OPT - 机载性能工具 OMA - 操作手册 PF - 飞行飞行员 PM - 飞行员监控 PIC- 机长 QRH - 快速参考手册 TPR - 涡扇功率比 TOW - 起飞重量 V1 - 起飞决策速度 Vr - 旋转速度 V2 - 起飞安全速度 Vref - 参考速度 Vmu -最小脱杆速度 Vzf - 零襟翼机动速度 ZFW - 零燃油重量
先进自动化系统 (FAA):20 世纪 90 年代为美国国家空域的空中交通管制和管理而实施的硬件、软件和程序组合。“飞机”的缩写。ARINC 通信和地址报告系统。姿态指示器:陀螺仪飞机姿态显示器,也称为人工地平仪。另请参阅 EADI。自动相关监视:指定期向地面控制站自动报告飞机位置、高度和其他数据。自动航路空中交通管制,FAA 的先进 ATC 系统概念。航路和终端自动化之间的界限不再那么明确,该术语的使用正在减少;另请参阅 AAS、FAS。自动飞行服务站:一种交互式自动化设施,可向通用航空和其他飞行员提供与飞行相关的信息。另请参阅 FSS。人工智能。航空公司飞行员协会,航空公司飞行员的劳工组织。 (ALT-STAR):飞行管理系统的高度获取模式,在此模式下,飞机被命令爬升至预选高度并保持水平。辅助动力装置,一种小型涡轮机,提供电力、压缩空气和飞机液压系统的动力源。航空法规咨询委员会,由联邦航空管理局设立,以确保用户对监管过程的意见。航空无线电公司提供
°C 摄氏度 AAIB 航空事故调查处 ADIRU 空中数据/惯性参考装置 AEEC 航空公司电子工程委员会 海拔高度 AOC 航空运营商证书 APU 辅助动力装置 ARINC 空中无线电公司 ATA 航空运输协会 ATC 空中交通管制 BCD 二进制编码的十进制 BITE 内置测试设备 BNR 二进制补码表示法 CB 断路器 CFO 巡航副驾驶 CG 重心 CMC 中央维护计算机 COM 命令处理器 CS 认证规范 CVR 驾驶舱语音记录器 DIN 离散输入 DITS 数字信息传输系统 DLRB 数据加载路由盒 DMC 显示管理计算机 DOUT 离散输出 DTSB 荷兰运输安全委员会 DU 显示单元 EASA 欧洲航空安全局 ECAM 电子中央飞机监视器 EFIS 电子飞行仪表系统 EIS 电子仪表系统 EW/D 发动机和警告显示器 FAA 联邦航空管理局 FAR 联邦航空条例 FCDC 飞行控制数据集中器 FCMC 燃油控制和监控计算机 FCOM 飞行机组操作手册 FDC燃油数据集中器 FDR 飞行数据记录器 FL 飞行高度 FMGEC 飞行管理指导和
°C 摄氏度 AAIB 航空事故调查处 ADIRU 空中数据/惯性参考装置 AEEC 航空公司电子工程委员会 海拔高度 AOC 航空运营商证书 APU 辅助动力装置 ARINC 空中无线电公司 ATA 航空运输协会 ATC 空中交通管制 BCD 二进制编码的十进制 BITE 内置测试设备 BNR 二进制补码表示法 CB 断路器 CFO 巡航副驾驶 CG 重心 CMC 中央维护计算机 COM 命令处理器 CS 认证规范 CVR 驾驶舱语音记录器 DIN 离散输入 DITS 数字信息传输系统 DLRB 数据加载路由盒 DMC 显示管理计算机 DOUT 离散输出 DTSB 荷兰运输安全委员会 DU 显示单元 EASA 欧洲航空安全局 ECAM 电子中央飞机监视器 EFIS 电子飞行仪表系统 EIS 电子仪表系统 EW/D 发动机和警告显示器 FAA 联邦航空管理局 FAR 联邦航空条例 FCDC 飞行控制数据集中器 FCMC 燃油控制和监控计算机 FCOM 飞行机组操作手册 FDC 燃油数据集中器 FDR 飞行数据记录器 FL 飞行高度层 FMGEC 飞行管理指导和
提供机载传感器数据的直接地理参考 Leica IPAS20 通过严格的卡尔曼滤波器将精确的 GNSS 解决方案与原始 IMU 测量相结合。Leica IPAS20 提供的 IMU 基于光纤、环形激光或干调陀螺仪技术。每种 IMU 类型都以高数据速率(从 200Hz 到 500Hz)测量精确的速度增量和角度增量。Leica IPAS20 将 IMU 测量的出色短期精度与 GPS 解决方案的长期稳定性相结合,在整个任务期间产生高度精确的位置、速度和方向。卡尔曼滤波器将同时估计来自加速度计和陀螺仪的误差。Leica IPAS20 还可以估计 GNSS 天线和传感器参考中心之间的杠杆臂。估计的实时解决方案(包括位置、速度和滚动、俯仰和航向)可用于飞行管理,也可用于控制其他传感器。滚动、俯仰和航向可以作为稳定支架(如 Leica PAV30)的数字信号输出,以提高支架的精度。或者,它们可以作为模拟信号输出以控制其他传感器功能,例如 Leica ALS50 激光扫描仪的滚动补偿。灵活且可扩展的机载系统 Leica IPAS20 系统由 Leica IPAS20 控制单元和集成的 GNSS 接收板、GNSS 天线、IMU 和软件组成。该系统专为所有类型的机载传感器而设计: