先进通用航空运输实验 (AGATE) 是 NASA、FAA 和众多飞机制造商及选定供应商的合资企业。AGATE 的目标是开发技术,制造一架单引擎、四座飞机,该飞机具有改进的航空电子设备和耐撞性,售价约为 100,000 美元。AGATE 有许多工作包,涵盖飞行系统、推进传感器和控制、集成设计和制造、防冰系统、AGATE 集成平台、飞行训练课程、系统保证和项目管理。集成设计和制造 (ID&M) 工作包内的低成本制造组正在制作本设计指南。本指南的目的是记录制造飞机部件所采用的当前材料和工艺,总结 AGATE 内研究的低成本和新兴制造技术,并研究汽车技术转让。本文末尾的摘要将比较各种材料和工艺,以帮助读者确定适合不同应用的有前景的制造方法。
CS-23 飞机的自动飞行能力通过基于目视飞行规则 (VFR) 的自动机动而得到增强,目前载人飞行也遵循此规则。本文介绍的系统能够使用具有安全监控功能的自动飞行控制系统的现有模块将飞机引导至预定的着陆轨迹。本文开发的有限状态机使用户能够提供高级命令,使自动化系统能够根据 VFR 将飞机引导至选定的预先规划轨迹。进近和复飞机动是使用航路点离线规划的,这些航路点用于引导和控制。在 C2LAND 项目过程中,该系统被集成到飞行系统动力学研究所的自动飞行软件中。使用增量测试计划进行了软件在环 (SiL) 和硬件在环 (HiL) 测试,以确保代码的安全性和稳健性。随后,该系统在研究所的可选驾驶 Diamond DA42 飞机上的广泛飞行测试活动中得到了成功演示。
AAIB 航空事故调查处 AFS 自动飞行系统 agl 高于地面 AIP 航空信息出版物 amsl 高于平均海平面 AP 自动驾驶仪 AP 1 1 号自动驾驶仪 AP 2 2 号自动驾驶仪 ATC 空中交通管制 A/THR 自动油门 ATIS 自动终端信息系统 CAA 民航局 CDA 恒定下降角 CDU 控制显示单元 CFIT 可控飞行撞地 CMD 指挥模式 CRM 机组资源管理 CRS 航线 CVR 驾驶舱语音记录器 CWS 控制轮转向 DME 测距设备 EFIS 电子飞行信息 EGPWS 增强型 GPWS FAA 美国联邦航空管理局 FAF 最后进近定位点 FCOM 飞行操作手册 FCU 飞行控制面板 FD 飞行指引仪 FDR 飞行数据记录器 FL 飞行高度 FLC 飞行高度变化 FLTA 前视地形规避 FMA 飞行模式信号器 FMC 飞行管理计算机 FMS 飞行管理系统 FO 副驾驶 Fpm 英尺每分钟 ft 英尺
本文件适用于 Ames 内部管理的 C 类和 D 类太空飞行系统、有效载荷和技术演示项目以及 Ames 采购的航天器或航天器部件。对于从知名航空航天承包商采购的航天器和航天器部件,这些公司制定的最佳实践可能是可以接受的。在制定本文件要求的过程中,应解决个别承包商最佳实践的可接受性问题。国际空间站有效载荷只需满足国际空间站要求,并应使用本文件作为设计指导和最佳实践。经 ACE 和执行组织管理层同意,出于小规模努力或战略原因,可以放弃本文件的适用性。本标准是一份动态文件,并定期评估和更新以提高其清晰度和有效性。虽然工程原理和实践是稳定的,但所选要求集可能会根据它们是否继续通过纳入而保证增加可见性而发展。在本文件中,除非另有说明,否则所有文件引用均假定为最新版本。P.3 权限
➢ 1967 年,美国航空母舰福莱斯特号上的一架战斗机的导弹未及时引爆,造成 134 人死亡,161 人受伤,损失超过 5 亿欧元。怀疑屏蔽连接器安装不当或接线缺失。➢ 1988 年,国际机构报告称,一架美国陆军直升机因飞得太靠近强大的雷达和无线电发射器而因 EMI 坠毁(22 人死亡)。怀疑电子控制飞行系统易受 HIRF 环境影响。➢ 1984 年,一架龙卷风战斗机在飞得太靠近强大的美国之音 (VOA) 高频 (HF) 波段发射器后在慕尼黑附近坠毁。➢ 在汽车领域,早期的防抱死制动系统 (ABS) 在严酷的 HIRF 环境下发生故障,导致致命事故。一些德国高速公路路段安装了网状屏蔽,以减弱附近发射器的电磁场。现在,通过对线束进行大电流注入 (BCI) 和辐射场攻击,对安全相关设备进行了有效的 HIRF 防护,其方式与航空设备相同。
我们相信,S.M.A.K. 在向 F.A.I. 提交有关国际力量和韦克菲尔德规则的最终提案时,会仔细研究这两项比赛的结果列表。尽管克兰菲尔德的条件变化很大,但起飞时的天气几乎完美。风漂移可以忽略不计,热活动几乎为零,晴朗的蓝天是后者条件的明确指示。在平均 14 秒的发动机运转中,参加飞行比赛的选手在这场决定性的比赛中平均成绩为 4:49,这表明在发动机运转 10 秒的情况下,这个数字不会偏离理想的三分钟标记。如果当时有热气流,那么这场飞行比赛很可能由计时员的视力决定,就像去年在芬森一样。我们得知,霍加纳斯的天气几乎令人震惊,而且看起来,再加上五次飞行系统,它成功地阻止了任何人达到他们的最高配额。尽管如此,尽管条件极其恶劣,前三名选手仍然完成了五次最高纪录中的四次。
为了支持 NASA 的月球探索计划(即 Artemis 计划),EGS 计划管理两个主要的软件开发项目:(1) 太空港指挥和控制系统 (SCCS),该系统将操作地面设备(如泵、电机和阀门),并在发射准备期间监控猎户座和 SLS;(2) 地面和飞行应用软件 (GFAS),该系统将与肯尼迪的飞行系统和地勤人员进行交互。在 2016 年 3 月的一次审计中,我们报告称 SCCS 已大大超出其初始成本和进度估计,开发成本增加了约 77%,软件的完全可操作版本的发布推迟了 14 个月。在这次审计中,我们评估了 NASA 对 GFAS 开发的管理,特别是 NASA 是否已在其软件开发中采取了适当的措施,并充分管理了风险,因为并行硬件和软件开发非常复杂。为了进行这次审计,我们确定了关键技术风险,审查了项目进度状态,分析了财务数据,审查了 GFAS 开发中使用的相关文档,并采访了项目官员、工程人员和承包商。
第一个案例研究称为 LUVOT(LEO UV 光学望远镜),是一台 500 公斤的探索者级紫外线太空望远镜,开发计划为 4.5 年。飞行系统由一个 100 公斤的有效载荷组成,该载荷包含一组四台望远镜(孔径 <25 厘米),其 CCD 探测器经过调整可覆盖电磁频谱的不同范围,以及一个 400 公斤的商用低成本航天器总线。望远镜有效载荷包括由复合材料制成的重要结构元件、使用先进材料的几个轻质镜子、一个电子组件和一个滤光轮。航天器总线采用标准铝蜂窝结构元件,具有被动热控制,采用铰接式阵列太阳能供电,没有推进系统。此外,总线是 3 轴控制的,具有基于 Rad750 的处理单元和机载存储,并使用 X 波段 SSPA 与地面通信。图 1 提供了 LUVOT 的高级主设备清单 (MEL) 和 LUVOT 飞行系统的艺术渲染图。附录 A 中提供了用于估计 LUVOT 系统的完整 MEL。
图 1:航空电子设备结构的简单分解,重点介绍选定的导航系统 航空电子设备(航空和电子相结合的术语)应用由于其运行环境而具有非常苛刻和严格的要求。飞机航空电子组件发生故障可能会立即危及生命。因此,必须密切监控和测量航空电子设备的各个方面,以发现安装和维修缺陷。 如图 1 所示,航空电子设备大致分为导航、通信、传感器、显示器和数据记录器等类别。除了电传电子控制飞行系统外,上述分类对大多数现代飞机(民用和军用)仍然有效。 本应用说明的重点是突出罗德与施瓦茨用于航空无线电导航信号的各种测试解决方案。此类信号包括甚高频全向无线电测距 (VOR)、仪表着陆系统 - 下滑道 (ILS-GS)、仪表着陆系统 - 定位器 (ILS-LOC) 和标记信标 (MB)。民用测距设备 (DME) 和军用战术空中导航 (TACAN) 已在应用说明 1GP74 中介绍,因此本文不再深入探讨。本文讨论了生成和分析测量解决方案;特别是,哪种解决方案最能满足不同航空客户的需求,无论是
一直致力于提供增强培训的方法,同时大幅降低成本。虽然已经取得了一些进步,但最近立体摄像机、头戴式显示器和运动跟踪等高性能硬件的进步弥补了以前方法中遇到的技术差距。此外,这些技术现在已可商用现货 (COTS) 供应,成本比十年前低得多。使用这种新的低成本硬件,Systems Technology, Inc. (STI) 开发了 Fused Reality® Flight,这是一种基于 STI 专利 Fused Reality® 技术的混合现实解决方案,用于飞行中飞行员评估和培训。在为 NASA 进行的成功的飞行 Fused Reality® 演示的基础上,当前的飞行系统应用了新的低成本 COTS 硬件来创造飞行体验,允许将包括其他飞机在内的虚拟物体放置在驾驶舱窗外,作为通过头戴式显示器观看的虚拟和现实世界视频场景的一部分。飞行员通过虚拟平视“显示器”保持态势感知。此外,组合视频图像支持对实际驾驶舱仪表和接收器的扫描。本文介绍了混合现实模拟解决方案在飞行环境中的应用。