生产力 如果无法在合理的时间内制作和交付,世界上最好的图像也会变得不那么有吸引力。新的 Leica XPro 地面处理软件将最好的机载数字传感器与最快的工作流程相结合。Leica XPro 的“飞行速度处理”将使 Leica ADS80 成为最具生产力的传感器解决方案。 效率 Leica ADS80 数字机载成像解决方案由子系统和组件组成,它们几乎全部由内部开发和制造。这样,Leica Geosystems 可以提供必要的紧密集成,以实现您对所选机载数字传感器的期望:最佳结果、最高生产力和最低成本。
由于飞行速度较高,许多接头承受的负载也较大,因此喷气式模型需要良好的粘合技术。我们强烈建议您使用慢速填充的触变性环氧树脂将高应力接头(如铰链和控制喇叭)粘合到位,最常用的是“Aeropoxy”(Bob Violett Models,美国)。自混合喷嘴可轻松将所需量精确涂抹在正确的位置,并且不会流到您不想要的地方!它需要大约 1-2 小时才能开始硬化,因此也为精确组装提供了充足的时间。最后,它可与所有玻璃纤维和木材表面形成极好的粘合。当然,有许多类似的胶水可供选择,您可以使用自己喜欢的类型。
最近,协作式无人机 (UAV) 已用于多种复杂的军事和民用应用中。移动目标搜索 (MTS) 和移动目标跟踪 (MTT) 是需要协作式无人机参与的基于 UAV 的应用之一。因此,本文提出了一种用于 MTS 和 MTT 的协作式无人机框架,称为 (CF-UAVs-MTST)。CF-UAVs-MTST 基于 GzUAV 联合模拟器。它提供了一种 MTS 机制来为 UAV 生成空中航路点。MTS 算法考虑了飞行速度和高度以及机载摄像机的分辨率。MTS 算法可确保有效的覆盖率,约为 96.2%。在执行 MTS 任务时,将运行一种基于级联分类器的算法来检测目标。此外,我们提供了一种 MTT 机制来估计目标运动并设计最佳跟踪路径。仿真结果表明,CF-UAVs-MTST 可以实现快速且高精度的跟踪。
自 21 世纪初以来,美国一直积极发展高超音速武器(飞行速度至少为 5 马赫的机动武器),将其作为常规全球快速打击计划的一部分。近年来,美国将这种努力集中在开发高超音速滑翔飞行器(从火箭发射,然后滑翔到目标)和高超音速巡航导弹(飞行过程中由高速吸气式发动机提供动力)。正如前参谋长联席会议副主席、前美国战略司令部司令约翰·海顿将军所说,这些武器可以“在其他部队无法使用、被拒绝进入或不受欢迎的情况下,对远距离、有防御和/或时间紧迫的威胁 [如公路机动导弹] 进行反应灵敏的远程打击”。另一方面,批评者认为,高超音速武器缺乏明确的任务要求,对美国军事能力贡献不大,而且对威慑没有必要。
2.21 在麦克风上方 150 英尺的高度(交替从北向南和从南向北飞行)以两种不同的飞行速度(“慢速”和“快速”)进行飞越测量,旨在代表麦克风上方的最小和最大功率操作。此外,多旋翼飞行器测试包括一系列模拟起飞和降落,高度为 150 英尺 14 英尺,以及在 4 英尺处进行悬停机动,其中包括四个基本罗盘方向(测量期间每个方向保持 30 秒)。作者还提供了俄克拉荷马州研究中收集的多旋翼飞行器噪音测量值与迄今为止进行的其他已知 UAS 噪音测试(包括 Cabell, R 等人报告的 NASA 飞越噪音水平研究)的“粗略比较”。
一些编号为 Tu-95MS6 的飞机没有外部挂载点,因此仅在机管内的内部舱内配备了 6 枚 Kh-55。另一架 Tu-95MS 在机翼下配备了 4 个附加锚点,理论上可额外携带 10 架 Kh-55(每个机翼下,内侧发动机和机身之间有一个双支撑,还有一个三支撑发动机短舱之间):该型号称为 Tu-95MS16。自2015年起,Tu-95MS机翼下可携带8枚独立隐形Kh-101巡航导弹(核版本为Kh-102),射程为5000公里。导弹重 2,400 kg,包括预留的 400 kg 负载,长近 7.5 m,翼展(机翼展开)为 5 m。该导弹的飞行速度为1000公里/小时,精度为15-20m。
摘要 舰载机滑跃起飞飞行条件特殊、飞行速度低,对飞行安全构成威胁。处理该多学科交叉问题,需要综合考虑航母运动、飞机动力学、起落架和海况风场等因素。针对舰载机滑跃起飞的具体海军作战环境,建立了涉及舰载机、飞机、起落架运动实体,涉及起飞指令、控制系统和甲板风扰动的多体系统一体化动力学仿真模型。基于Matlab/Simulink环境,实现了多体系统仿真。通过舰载机滑跃起飞算例仿真,验证了模型的有效性和结果的合理性。该仿真模型与软件适用于舰载机起飞性能、飞行品质与安全、起落架载荷影响、航母甲板参数等多学科交叉问题的研究。ª 2013 CSAA & BUAA。由 Elsevier Ltd. 制作和托管。保留所有权利。
摘要:该海报对螺旋桨性能的上前缘表面粗糙度影响进行了实验评估。本研究中使用的螺旋桨的直径为16英寸,音高为10英寸。四个螺旋桨用圆顶形状的粗糙度打印出3D。每个螺旋桨都具有不同的粗糙度区域覆盖范围,弦脉和跨度范围不同。对这些螺旋桨进行测试是在低亚音线风洞中进行的,测量推力,扭矩,空中速度和旋转速度。空气速度从20英尺/s到50英尺/s,旋转速度从3000 rpm到6000 rpm不等。这些条件全部属于低雷诺数制度,这可能容易受到边界层分离的影响。结果表明,在某些情况下,表面粗糙度对螺旋桨的性能产生了积极影响,这可能表明粗糙度被动地向上表面上的流动。这项研究的结论将无人飞机运营商在不利天气下在低飞行速度下对性能的潜在影响,从而促使螺旋桨选择和设计变化。
尝试瞄准并射击飞行良好的米格 21!Predrag Pavlovic,文凭。和 Nenad Pavlovic,文凭,JAT 航空公司 现代战斗机的机动性是通过其飞行速度以及可以维持多大的迎角并仍然转弯来衡量的。在某些战争情况下,美国评估和侵略者使用,米格 21 已表明它可以跟上这一领域的现代飞机。飞机制造商一度认为这无关紧要,并对迎角施加限制。在低速下以超过允许的 28-33 度局部迎角飞行可以相对安全地实现曾经被认为是现代战斗机特权的机动性。几年前,媒体上出现了关于 1973 年以色列-阿拉伯战争期间一场混战的报道和证词。当时埃及米格 21 飞行员在 3000 英尺的起始高度成功完成 Split-S 机动,不到手册规定的最低空域的一半(约 6750 英尺)。可以在互联网上找到适当的模拟:http://www.youtube.com/watch?v=bQMzK2WfYYM&feature=player_embedded
最近,七名美国空军飞行员被指控鲁莽危害他人安全,原因是他们的飞行速度超过每小时 140 英里。换个角度来看,F-15 的进近和着陆速度也接近每小时 140 英里。不同之处在于,F-15 的飞行员拥有大量专门的支持人员来确保其安全。始终有空中交通管制人员全权负责安全的机场环境和着陆表面。我们还在控制塔内安排了一名飞行主管 (SOF),为关键的飞行任务提供额外的眼睛和耳朵。最后,每次机组人员登上飞机时,我们都会为他们配备最先进的安全装备。每个机组人员都有权评估情况,如果情况看起来或感觉不对,他们总是可以使用王牌,通过低空进近绕行——最终的“重来”。如果情况变得危险,尤其是在紧急时刻,摩托车手既得不到这种深度支持,也没有其他选择。骑摩托车时,你只有一次机会针对任何特定情况做出正确选择,所以为什么不放慢速度,给自己多一点时间呢!