© 作者 2022。本文根据知识共享署名 4.0 国际许可协议获得许可,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的致谢中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法定法规允许或超出了允许的用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。
摘要 - 能源存储是一种新兴技术,可以使基于可再生能源的分布生成的过渡,减少峰值功率需求以及生产和使用之间的时差。可以在网格级别(集中)或用户级别(分布式)上实施能量存储。化学蝙蝠代表了表现和成熟度的存储系统的事实上;但是,电池具有相当大的环境足迹,并使用珍贵的原材料。机械存储技术可以代替化学电池的可行替代方法,因为它们对环境和原材料的影响减少了。本文介绍了电动机/发电机的设计,用于家庭级别的木制储能。通过有限元分析(FEA)比较了三台参考机器:传统的铁核表面永久磁铁(SPM)同步机,一种同步降低机器(Synchrel)和无铁SPM合成机器。仿真表明,由于其高效率,高排放持续时间和低损失,无铁机器的分布储能良好。设计和制造了无铁的机器。实验确认模拟结果。
鼓励作者使用包含期刊标题的样式文件模板向 INFORMS 期刊提交新论文。但是,使用模板并不能证明该论文已被接受在该期刊上发表。INFORMS 期刊模板仅用于提交给 INFORMS 期刊,不应用于分发印刷版或在线版论文或将论文提交给其他出版物。
1 GRAN ROMANO - 宪法 57 1 7 W. Leon - W. Mancilla 3cp 10va 11va181224 1,100 3-2 20 3/4 1:08:64 54.4 434 1 Mirafiori - 白色,黄色十字,蓝色袖子,Gor 31 2 NATURALDE NUEVE - 前进三月 57 2 4 JMsoto - V. Moris 5va 13ha 11ca161224 1,200 FAR 1:11:83 69.8 434 1 Aleph - 白色,“w”,黑色手镯和帽子。 31 3 MUYINTENSO - Bad Daddy 57 3 5 R. Fuenzalida - L. Salinas T. 第三名 第九名 第五名 091224 1,100 1 10 1/2 1:08:20 27.4 479 1 Sonrisal - 蓝色,半浅蓝色,蓝色袖子,浅蓝色拳头 31 4 LORENZAEMILIA- Cupid 57 4 4 MA Donoso - W. Biava Rojas 第 11 名 第 14 名 第 14 名041224 1,100 1 16 3/4 1:10:32 255.5 423 1 Lc Torres - 黄色,V 形袖章,手镯和帽子 31 5 ELOPORTUNO - Omayad 57 5 4 GA Perez - B. Gomez 第三名 第 8 名第四名 231224 1,100 1 8 1:08:51 7.1 480 1 Le Mont – 蓝色,黄色条纹,臂章和帽子。 9 6 RISIKO - Indy Dancer 57 6 5 V. Cifuentes - R. Olivares 第 10 名 第 16 名 cp 第 9 名 18 12 24 1,100 1 17 1:09:58 98,432 1 Margal - 灰色 V 形 Ama、橙色护肩、黑色袖子 31 7 WATER CLOUD - Lookin At Lucky 57 7 6 RS Dores - E. Donoso 第 4 名 cp 第 11 名 第 11 名 13 1 124 1,100 3-2 14 1:08:68 19.1 442 1 Los Felipes - 红色、绿色列表和帽子。 7 8 MY GREAT FRIEND- Tumblebrutus R-7 57 8 9 I. Martinez - R. Bernal T. 9th 15vp 3vp100724 1,000 1 2 1/2 0:58:35 31.7 459 1 Olga Luisa - Lila Franja Solferino,Mangas Verde,gor 31 9 CREED - Tourist 57 9 4 CE Urbina - O. Urbina 10th 6th 8th 181124 1,100 2-1 9 1/4 1:09:62 37.7 417 1 Nimble - Purple Chevrons CalypsoMgas Blue Rings Mo 31 10 SHANGHAI EXPRESS - Shanghai Bobby R-13 57 10 8 K. Espina - N. Espina L. 8th 1vp 2vp 140224 1.000 6-2 3/4 0:58:68 79.4 449 1 Ada Faride - 红色、黑色条纹、袖子和帽子。 2.5 11 LLENADE AMISTAD - California Chrome 57 11 5 J. Castillo - W. Mancilla 第三名 第五名 第六名 231224 1,100 3-2 7 3/4 1:09:13 5,456 1 French Potato - Blanco, Mangas Negro YBlancoACuadri 31 12 JAPONEITOR - Hiraboku Deep (jap) 57 12 4 J. Medina - R. Silva 第四名 第八名 第四名 181224 1,100 1 6 3/4 1:09:58 4,411 1 Barabaraba - Cafe YVerde ACuadritos,Mangas Verdes, 5 13 CALIZ DE PLATA- Dylan Thomas 57 13 4 D. Carvacho - R. Bernal T. 第三名 第一名 第十三名240624 1,100 3-2 12 1/4 1:08:07 22.3 460 1 Bruno Alonso - 黑色,Str 橙色,M.橙色,Str 黑色 31 14 CONTIGO SI QUIERO - Goldencents 57 14 5 N. Ramirez - C. Gonzalez 12cp 8cp 7ca061224 1,000 2-1 6 1/4 1:00:00 27 499 1 Ojotaeme - 蓝色, 条纹 & 黄色袖子, 带帽 Ca 11 15 DARCYPINK - Dylan Thomas 57 15 4 S. Gonzalez - R. Olivares 13th 12th 10th181224 1,100 1 23 1:09:58 70.1 415 1 Margal - 灰色 V 形 Ama,橙色护肩,Ne 31 袖子 16 ELROMPE HIELO - 长腿叔叔 R-11 57 16 5 F. Olivares - R. Olivares 4va 1vp 4vp 010524 1.000 11-2 2 0:57:10 9,5 459 1 Margal - 灰色 V 形 Ama,橙色护肩,Ne 11 袖子
3 教授,机械工程系,JT Mahajan COE,法兹普尔,马哈拉施特拉邦,印度。 4 教授,机械工程系,JT Mahajan COE,法兹普尔,马哈拉施特拉邦,印度。 ---------------------------------------------------------------------***------------------------------------------------------------------------------------------------ 摘要 – 飞轮是目前处于不同发展阶段的储能技术之一,特别是在先进技术领域,飞轮是一种动能存储和检索设备,能够在高转速下输出高输出功率,例如宇宙飞船。飞轮的性能由三个主要标准决定:转速、横截面形状和材料强度。与转子转速相关时可以安全产生的动能水平直接由材料强度决定;然而,本研究的重点只是研究飞轮材料如何影响单位质量的能量存储和输送能力,也称为比能。所提出的计算机辅助分析和优化技术的结果表明,选择合适的飞轮材料可以显著影响比能性能,并由于质量减小而减轻高转速下轴和轴承的工作压力。使用 Solidworks 软件设计了三种轮辋式飞轮,并使用 Ansys 软件进行了结构分析。第一个飞轮由低碳钢制成,为了减轻其重量,还开发了复合飞轮。碳纤维用于制造其他两个飞轮。在这三个飞轮中,由碳纤维主体和低碳钢轮辋制成的飞轮将更高效,重量更轻。
摘要 - 本研究对飞轮储能系统及其在各种应用中的可行性进行了严格的审查。飞轮储能系统作为一种环保的储能方法越来越受欢迎。飞轮以机械旋转能的形式储存能量,然后在需要时将其转换成所需的电力形式。储能是任何电力系统的重要组成部分,因为储存的能量可用于抵消电力输送系统中的不一致性。能源危机,主要是在发展中国家,对各个部门产生了不利影响,导致人们诉诸各种储能系统来应对所经历的停电。太阳能系统一直是首选的备用系统。然而,太阳能电池的高昂购买和维护成本一直是一大障碍。当需要频繁充电和放电循环时,飞轮储能系统是合适且经济的。此外,飞轮电池具有高功率密度和低环境足迹。人们正在采用各种技术来提高飞轮的效率,包括使用复合材料。本评论论文将讨论飞轮技术的应用领域,例如电动汽车、太阳能和风能发电存储系统以及不间断电源系统。
孤岛微电网中频率不稳定或振荡的主要原因是负载不稳定和分布式发电机组 (DGU) 的功率输出变化。可再生能源供电的孤岛微电网系统面临的一个重大挑战是保持频率稳定性。为了解决这个问题,本文设计了一种比例积分微分 (PID) 控制器。首先,通过结合各种 DGU 和飞轮储能系统 (FESS) 构建孤岛微电网模型。此外,考虑 FESS 和 DGU 的一阶传递函数,得到一个线性化传递函数。该传递函数进一步近似为一阶加时间延迟 (FOPTD) 形式,以设计高效且易于分析的 PID 控制策略。使用 Chien-Hrones-Reswick (CHR) 方法评估 PID 参数,用于设定点跟踪和 0% 和 20% 超调的负载扰动抑制。与其他讨论的调整方法相比,用于 20% 超调的负载扰动抑制的 CHR 方法成为首选。所讨论方法的有效性通过频率分析和瞬态响应得到证明,并通过实时模拟得到验证。此外,表格数据呈现了调整参数、时域规范和比较频率图,支持了所提出的调整方法对所提出的孤岛模型的 PID 控制设计的有效性。
飞轮是一种机械储能系统,主要用于辅助削减主电源工作周期的峰值,例如柴油发电机对周期性负载需求的反应。其好处在于节省燃料,同时减少二氧化碳和运营成本。飞轮的使用在业内并不常见,由于是一种经济高效的解决方案,Dumarey Green Power 已经利用了飞轮多年。飞轮利用了 F1 的技术,当时新混合动力时代于 2009 年首次引入,用于第一个动能回收装置系统 (KERS)。当时,飞轮和电池都在考虑之中。然而,由于人们预测公路车辆将实现电气化,而且 F1 受到 OEM 的影响,因此采用了电池。飞轮选项已发展到相当重要的功能阶段,非常适用于汽车、非公路和建筑行业,后者就是 Dumarey Green Power 生产的 Peak Power 200 系统。
摘要飞轮技术与电池储能系统的集成提出了一种有希望的策略,以改善储能解决方案的运营寿命和经济可行性,以提供辅助服务。在这项研究中,使用混合整数线性编程优化建模来研究在芬兰FCR-N市场中将电池与飞轮相结合的好处。不同的飞轮:电池容量比率用于研究最佳比率。此外,还考虑了电网频率和电池降解的影响。结果表明,电池降解对混合系统的最佳调度几乎没有影响。强调飞轮 - 击杆组合在减轻辅助服务期间电池降解方面的鲁棒性。调查结果表明,将飞轮整合到电池系统中可以延长运行寿命或通过减轻电池中的小周期的负担来降低电池的运行成本。具体来说,建议使用飞轮与击式容量比为0.2的混合系统,表现出明显的2.7倍延长电池寿命,并且与更高的容量比率相比,不同的网格频率场景的强烈影响较小。此外,Flywheels的合并释放了各种商机,从而提高了储能资产的整体经济价值。
一个世纪前,亨利·福特 (Henry Ford) 曾指出,当他的客户想要“更快的马”时,他就会给他们 T 型车。如今,早期的生成式 AI 用例往往侧重于提高现有解决方案和工作方式的效率——相当于更快的马。虽然飞轮框架可以帮助通过这种方法推动价值,但必须记住,更大的奖励是存在的。大多数企业不会将所有注意力都集中在边际改进上,而是希望根据可用的新选项彻底重新思考最佳解决方案是什么。为了避免在未来两到三年内陷入巨大的技术和流程债务问题,在评估未来价值和制定早期 GenAI 战略时,有必要密切关注长期重大颠覆和重塑的潜力。