1. 论圣雄甘地。2. 印度体育。3. 数字印度。4. 陆路运输。5. 水运。6. 航空运输。7. 印度的自由斗争。8. 印度音乐。9. 印度舞蹈。10. 科学技术的发展。11. 军队在印度国防中的作用。12. 家畜。13. 肉食动物。14. 食草动物。15. 印度考古遗迹 16. 农业。17. 印度鸟类。18. 印度工艺品。19. 印度卫生与医药。20. 铁路。21. 印度空间技术。22. 印度工业化进程 23. 印度邮政史。24. 印度部落文化遗产。25. 印度宪法 75 周年。26. 印度电影。 27. 鲜花 28. 奥运会 29. 服饰 30. 教育机构。31. 社会改革者 32. 邮票中的卡纳塔克邦。33. 建筑。34. 节日。35. 食品和营养。36. 儿童节 37. Janpith 奖获得者。38. 画家 39. 印度圣人 40. 科学家和发明 41. GI 标签产品。42. 卡纳塔克邦 50 周年(1973-2023 年)
摘要:基于功能特征的方法的最新出现允许对社区内部功能和互动的作用进行更全面的评估。作为浮游植物的大小和形状是其对食草动物的可食用性的主要决定因素,某些形态功能性的浮游植物性状的改变或丧失应影响浮游动力,纤维性和人口动态。在这里,我们调查了变化的浮游植物形态功能性状分布对浮游动物的响应,并以对比鲜明的食物尺寸偏好和喂养行为的响应。To test this, we performed feeding trials in laboratory microcosms with size-fractionated freshwater phytoplankton (3 size classes, >30 µ m; 5–30 µ m and <5 µ m) and two different consumer types: the cladoceran Daphnia longispina , (generalist unselective filter feeder) and the calanoid copepod Eudiaptomus sp.(选择性馈线)。我们观察到控制和放牧的浮游植物群落之间的性状和组成的变化没有显着变化。然而,社区组成和结构在小和大尺寸的分数之间差异很大,这表明大小在结构天然浮游植物群落中的关键作用。我们的发现还强调了在研究浮游植物浮游生物中的生态动力学时,需要结合分类学和基于特质的形态功能的方法。
预计到 2050 年,世界人口将达到 96 亿,在满足日益增长的优质蛋白质需求的同时为子孙后代保护自然资源,面临着巨大挑战。渔业可以通过提供动物蛋白、创造就业机会和促进经济增长,在应对这一挑战中发挥关键作用。生物絮凝技术 (BFT) 代表一种高度先进的水产养殖方法,其中营养物质在养殖系统中不断循环和再利用,从而最大限度地减少或消除了水交换的需要。BFT 是一种生态友好型方法,通过控制水中的碳和氮来利用原位微生物蛋白质生产。生物絮凝是指水中的悬浮生长物,由活的和死的颗粒有机物、浮游植物、细菌、原生动物和细菌的食草动物组成。它既是养殖生物的食物资源,也是一种水处理解决方案。该系统又称为活性悬浮池、异养池或绿汤池。生物絮凝池的科学建造是生物絮凝养鱼系统絮体和鱼的产量和生产力的重要决定因素。因此,在实施生物絮凝养鱼时,应特别注意生物絮凝池的科学建造。
该模块将包括对植物药物的发现和使用以及从植物中获得的具有植物治疗重要性的分子的回顾。讨论了天然产物化学的某些方面,即三类主要次级化合物(萜类化合物、酚类化合物和生物碱)的生物合成、生态作用和毒性。介绍了代谢组学的原理和应用。该模块回顾了这些天然产物在防御微生物和食草动物方面的作用。将介绍民族植物学和系统发育学在从生物多样性中发现现代药物方面的重要性,以及围绕生物勘探的法律和道德考虑。接下来将介绍关于药用植物可持续利用和保护的现代理论和实践。还将讨论替代药物的基础知识,重点介绍非洲和中国传统药物,以及当前基于证据的研究和由此衍生的产品开发。课程将涵盖从农民到制药厂的药用天然产物生产的生物技术方法,包括植物细胞培养和生物反应器。课程将进行关于药物发现方法的实践课程,使用色谱技术对单宁、生物碱和皂苷等次生代谢物进行植物化学分析。实践课程中还将进行微生物生物测定,以培养发现新抗生素的技能。
卡萨内 - 卡万戈赞比西跨境保护区 (KAZA-TFCA) 将于 8 月至 10 月进行非洲首次协调的大象航空调查。在为期一周的 KAZA 伙伴国专家团队筹备研讨会间隙接受采访时,世界野生动物基金会 (WWF) 纳米比亚高级保护规划顾问 Russell Taylor 博士表示,这项调查将确定大象和其他大型食草动物的数量和季节性分布。Taylor 博士表示,这项调查是 KAZA 选举战略规划框架的一项优先行动,是在 2019 年卡萨内大象峰会之后制定的。他说,该框架的目标之一是将 KAZA 大象作为一个连续的种群在 KAZA 伙伴国进行保护和管理,因此同步航空调查是当务之急。KAZA 伙伴国包括安哥拉、博茨瓦纳、纳米比亚、赞比亚和津巴布韦。他说,由于 COVID-19 限制措施推迟了航空调查的实施,因此航空调查是当务之急。泰勒博士说,虽然各个国家在不同时间进行了调查,但可能会遗漏或重复计算一些大象,因为它们在 KAZA 地区迁徙,一次性统计所有大象数量才能得到正确的估计数量。“了解 KAZA 大象种群将为伙伴国的管理决策提供参考,每个国家都将更好地管理其动物,因为调查将确定它们的
植物暴露于非常不同的攻击者,包括微生物病原体和草食昆虫。为了保护自己,植物已经发展了防御策略,以抵消潜在的入侵者。植物防御信号研究的最新进展表明,根据遇到的入侵者的类型,植物能够差异激活诱导,广谱防御机制。植物激素水杨酸(SA),茉莉酸(JA)和乙烯(ET)是防御信号通路网络中的主要参与者。在SA-,JA-和ET依赖性信号通路之间的串扰被认为与对防御反应进行微调有关,最终导致了防御反应的最佳组合以抵抗入侵者。这些信号化合物的生物合成途径的基因工程以及模仿其作用方式的保护化学物质的开发为开发新策略的作物保护提供了有用的工具。但是,有证据表明,对微生物病原体的抗药性与对草食昆虫的抗药性之间的抗性:一旦植物的条件表达对微生物病原体的抗性,它可能会更容易受到食草动物的攻击,而反之亦然。然而,病原体和抗昆虫抗性之间的贸易证据是矛盾的。本综述集中于有关SA-,JA-和ET依赖性诱导对微生物病原体和草食性昆虫的抗性的最新实验证据。此外,我们将解决以下问题,无论是通过基因工程或通过使用防御信号的植物保护剂来操纵国防信号通路,是否会增强植物对潜在入侵者的免疫力,还是将成为作物保护策略的负担。
摘要:马匹是大型非鲁umminant的食草动物,并依靠微生物发酵来获得能量,其中一半以上的维持能量需求来自微生物发酵的闭和结肠。为此,马匹的胃肠道(GIT)具有广泛的各种微生物,每个GIT段都不同,这对于有效利用饲料的利用至关重要,尤其是使用内源性酶不会或很少降解的营养素。此外,与其他动物物种一样,GIT微生物群与宿主的细胞永久相互作用,并且参与了许多功能,其中炎症,免疫稳态和能量代谢。至于其他动物和人类,马肠道微生物组对饮食敏感,尤其是淀粉,纤维和脂肪的消耗。年龄,品种,比赛期间的压力,运输和运动也可能影响微生物组。由于其大小及其复杂性,马git微生物群容易受到由外部或内部压力源引起的扰动,可能导致胃溃疡,腹泻,结肠或结肠炎等消化系统疾病,并且被认为与诸如椎板炎,马层炎,马症,新墨西哥综合症或肥胖综合症等全身性疾病有关。因此,在本综述中,我们旨在了解GIT的每个部分的结构和功能术语中的共同核心微生物组,并确定潜在的健康或疾病的微生物生物标志物,这些生物标志物对于预测推定的扰动至关重要,优化全球实践和发展适应性的营养策略和个性化营养和个性化营养。
自从时间黎明以来,使用植物和植物产品在各种疾病中的治疗一直存在于人类中,这些植物的潜力是如此巨大,以至于由于抗生素耐药性的增加,不断寻找其隐藏的宝藏更为重要。这项研究旨在确定针对某些选定的临床病原体的乳木果树(叶片帕拉多氏菌)提取物的抗菌活性。使用五种致病性微生物,即蜡状芽孢杆菌,铜绿假单胞菌,白色念珠菌,大肠杆菌和沙门氏菌Typhi用于评估提取物的功效。使用Mueller Hinton琼脂,通过琼脂井扩散法对提取物的抗菌作用进行了检查。所使用的对照是阿莫西林抗生素。结果表明,树皮和粗叶提取物对每个临床分离株都有抗菌作用。粗叶提取物对所有测试的微生物的活性最低,而树皮提取物的活性最高。树皮提取物记录了15.5 mm的最高抑制区。该研究建议将乳木果树提取物作为对测试微生物引起的感染的抗生素物质的潜在来源。关键词:乳木果树,叶提取物,树皮提取物,原油提取物,病原体。引言越来越多的耐药病原体需要开发新的制剂来应对这种威胁。植物是合成用于防御微生物和食草动物的生物活性化合物的储层。由于它们的相对成本效益和环保性,因此可以利用这些化合物在植物中的潜力。植物传统上是
摘要:咖啡因被描述为可以被细菌降解的必不可少的天然,可行和可销售的嘌呤生物碱。细菌使用咖啡因作为其唯一的碳和氮的能力已在四十多年前阐明。本文使用标准收集的标准技术对微生物脱染过程的潜力进行了回顾,这些技术的最新信息和适当的信息以及来自在线和图书馆来源的数据侧重于细菌咖啡因降解过程:N-脱甲基化和C -8氧化。观察到这两个过程对咖啡因降解更有效,安全,具体,并且在经济上至关重要。各种生物已经在全球范围内分离出来,能够降解咖啡因,例如克雷伯氏菌,犀牛,阿尔卡吉烯,serratia,phanerochaete和bacillus sp。此外,已经确定了细菌咖啡因降解的无数生物技术应用,例如咖啡因粉化环境的生物修复,生物脱落,化学生产和诊断工具。doi:https://dx.doi.org/10.4314/jasem.v27i9.4 Open Access政策:Jasem发表的所有文章都是由AJOL提供支持的PKP的Open-Access文章。这些文章在出版后立即在全球范围内发布。不需要特别的许可才能重用Jasem发表的全部或部分文章,包括板,数字和表。版权策略:©2023作者。本文是根据Creative Commons Attribution 4.0 International(CC-By-4.0)许可证的条款和条件分发的开放式文章。J. Appl。,只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。将本文列为:Lukman,K;穆罕默德,a; Shehu,D; Babandi,一个; Yakasai,H。M;易卜拉欣,S。(2023)。微生物签发过程的潜力:审查。SCI。 环境。 管理。 27(9)1915-1924日期:收到:2023年8月9日;修订:2023年9月10日;接受:2023年9月25日发布:2023年9月30日关键字:咖啡因;生物降解;微生物;酶;有效的咖啡因(1、3、7-三甲基黄嘌呤或3、7-二氢-1、3、7-三甲基-1H-2、6-二酮)是嘌呤生物碱的成员。 它是黄氨酸的白色晶体生物碱,其纯形形式无味,苦和无定形,用作药物激活剂,其经验式C 8 H 10 N 4 O 2,分子量为184.2 g/mol的分子量和5小时的半寿命。 该化合物的母链是亲水性的,而其甲基是疏水性的(Kudema等,2023)。 咖啡因作为食物和饮料的来源已经在实践中已经存在了数十年,直到1891年弗里德里希·费迪南德(Friedrich Ferdinand)纯净地隔离了咖啡因(Heishman and Henningfield,2020年)。 咖啡因主要是针对害虫,食草动物和其他生物的防御化学物质SCI。环境。管理。27(9)1915-1924日期:收到:2023年8月9日;修订:2023年9月10日;接受:2023年9月25日发布:2023年9月30日关键字:咖啡因;生物降解;微生物;酶;有效的咖啡因(1、3、7-三甲基黄嘌呤或3、7-二氢-1、3、7-三甲基-1H-2、6-二酮)是嘌呤生物碱的成员。它是黄氨酸的白色晶体生物碱,其纯形形式无味,苦和无定形,用作药物激活剂,其经验式C 8 H 10 N 4 O 2,分子量为184.2 g/mol的分子量和5小时的半寿命。该化合物的母链是亲水性的,而其甲基是疏水性的(Kudema等,2023)。咖啡因作为食物和饮料的来源已经在实践中已经存在了数十年,直到1891年弗里德里希·费迪南德(Friedrich Ferdinand)纯净地隔离了咖啡因(Heishman and Henningfield,2020年)。咖啡因主要是针对害虫,食草动物和其他生物的防御化学物质
植食性昆虫已经进化出复杂的解毒系统来克服许多植物产生的抗食草动物化学防御。然而,这些生物转化系统在通才和专才昆虫物种中有何不同,以及它们在确定昆虫宿主植物范围方面的作用仍是一个悬而未决的问题。在这里,我们表明 UDP - 葡萄糖基转移酶 (UGT) 在确定 Spodoptera 属内昆虫物种的宿主范围方面起着关键作用。对宿主植物宽度不同的 Spodoptera 物种进行比较基因组分析,发现在通才物种中 UGT 基因数量相对保守,但在专才 Spodoptera picta 中 UGT 基因假基因化水平较高。CRISPR - Cas9 敲除 Spodoptera frugiperda 的三个主要 UGT 基因簇表明,UGT33 基因在使该物种利用禾本科植物玉米、小麦和水稻方面发挥重要作用,而 UGT40 基因促进棉花的利用。进一步的体内和体外功能分析表明,UGT SfUGT33F32 是使广谱 S. frugiperda 能够解毒苯并恶嗪类化合物 DIMBOA(2,4-二羟基-7-甲氧基-2H-1,4-苯并恶嗪-3(4H)-酮)的关键机制,DIMBOA 是由禾本科植物产生的强效杀虫毒素。然而,虽然这种解毒能力在几种广谱 Spodoptera 物种中得到了保留,但专食文殊兰植物的 Spodoptera picta 因 SpUGT33F34 的非功能性突变而无法解毒 DIMBOA。总之,这些发现为了解昆虫 UGT 在宿主植物适应中的作用、广谱和专谱之间进化转变的机制基础提供了见解,并为控制一组臭名昭著的害虫提供了分子目标。