植物中胼胝质沉积是由各种应激因素引起的,例如当植物受到食草动物和病原体的侵袭时。以蚜虫为例,蚜虫破坏的韧皮部筛管被胼胝质堵塞,预计会减少蚜虫对韧皮部汁液的接触,而蚜虫诱导的宿主植物中降解胼胝质的 b -1,3-葡聚糖酶基因上调可能会抵消这种对蚜虫表现的负面影响。我们用大麦突变体测试了这一假设,其中两个 b -1,3-葡聚糖酶基因(1636 和 1639)中的一个或两个已通过 CRISPR/Cas9 技术在 cv. Golden Promise 中发生突变。此前发现,这两个基因在易感大麦基因型中被谷物害虫 Rhopalosiphum padi L. 上调。测试了四个 1636/1639 双突变体、三个 1636 单突变体和两个 1639 单突变体系以及对照系的蚜虫抗性。所有突变体系均有单碱基插入,导致移码和提前终止密码子。四个双突变体系中的三个显示 b-1,3-葡聚糖酶活性显著降低,细菌鞭毛蛋白诱导导致双突变体叶片中胼胝质形成显著多于对照和单突变体系。然而,我们发现这些改良植物性状对大麦抗稻瘟病没有影响。已证实这两个基因在 Golden Promise 中均被稻瘟病上调。基因 1637 是另一种已知在稻瘟病菌中上调的 b-1,3-葡聚糖酶基因,与对照系相比,该基因在双突变系中的表达更高。由于这些蛋白质的韧皮部浓度未知,因此很难判断这是否可以弥补双突变体中 b-1,3-葡聚糖酶活性的普遍降低。
1.CACTI和生物多样性仙人掌是生物多样性的宝贵指标,强调了其本地栖息地中存在的多种生命形式和生态相互作用。研究仙人掌及其生态系统提供了对生物多样性的复杂动态的见解,以及保护这些独特而有价值的植物物种的重要性。适应恶劣的环境:仙人掌以其在极端条件(例如干旱沙漠)中生存的能力而闻名。它们的独特适应性,包括储物组织,减少叶片表面以最大程度地减少水分流失,以及保护食草动物的棘突,显示出植物已经发展为在挑战性的环境中发展为蓬勃发展的策略的显着多样性。物种多样性:仙人掌表现出广泛的物种多样性,属于仙人掌科家族的1,500多种已知物种。这种多样性包括各种大小,形状和生长习惯,从微小的球状仙人掌到高耸的柱状物种。每个物种都演变为占据特定的生态壁ches,这有助于其栖息地的整体生物多样性。栖息地多样性:仙人掌在美洲的各种栖息地中发现,从干旱的沙漠到热带雨林。它们在这种不同的环境中的存在突出了这些地区的生物多样性及其适应不同生态条件的能力。授粉与互助:仙人掌与蜜蜂,鸟类,蝙蝠和昆虫等传粉媒介进行了迷人的相互作用,这有助于其生态系统的生物多样性。许多仙人掌物种与特定的传粉媒介共同发展,形成了互助关系,从而使植物和传粉媒介受益。文化和经济重要性:仙人掌对人类社会具有重要的文化和经济意义。土著社区长期以来一直将仙人掌用于食品,医学和宗教仪式,强调了它们在传统知识系统中的重要性。此外,某些仙人掌物种,例如刺梨仙人掌(Opuntia),是为其可食用的水果而种植的,而另一些仙人掌物种则被视为花园和景观中的观赏植物。
专门用于洞穴栖息地,并且仅限于洞穴栖息地,无法在非洞穴栖息地生活。它们总是表现出一定程度的洞穴形态(地下生活的形态特化)。(2) 洞穴生物 (TP) 是兼性洞穴物种,它们经常栖息在洞穴中并在那里完成整个生命周期,但许多在洞穴外占据生态相似(凉爽、潮湿和黑暗)的栖息地。它们经常表现出一定程度的洞穴形态。(3) 洞穴生物 (TX) 是经常出现在洞穴中的物种,但无法在洞穴中完成整个生命周期。它们有时必须离开洞穴,通常是为了觅食。它们很少表现出任何洞穴形态。(4) 偶然出现的物种 (AC) 是偶然被冲刷、游荡或掉入洞穴并只能暂时存活的物种。尽管这些物种可能作为普通洞穴居民的食物来源,但偶然出现的物种在洞穴动物群的分布或进化分析中并不重要。我列出了大多数被判定为偶然出现的物种(但排除了明显的食草动物,如叶蝉),尽管随着时间的推移,这一类别可能会涵盖洞穴所在区域的大部分动物群。在许多情况下,判断许多物种与洞穴的相对关联程度还为时过早。我认为最好包括这些物种,而不是丢失信息。通过这样做,通过汇编其他数据(如斑蝥甲虫幼虫,Peck,1975b 所发现的),可能出现尚未显现的洞穴关联模式,并且可能更改物种所属的类别。生态术语内生动物(EN)或土壤动物(ED)也可用于洞穴动物。有些物种通常生活在土壤中,例如蚯蚓,它们在洞穴中的出现通常是零星的。地下栖息地或生物可能被称为地下生物,这与地上生物(土壤表面以上)形成对比。以下列表中发现的许多物种在阿拉巴马州以外的分布和生态环境仍不为人所知;它们被归入上述生态进化类别之一应被视为暂定的,并在获得更多信息时进行修订。生物名称后使用了以下缩写:TB = 洞穴生物;TP = 洞穴生物;TX = 洞穴生物;ED = 土壤生物;AC = 意外。
Rovira Roure 191,E-25198 Lleida,西班牙的Agrotecnio中心,Agrotecnio中心。摘要:由于过去几年取得了惊人的进步,以生产一系列具有养分水平的生物生物化的GM作物,因此必须开发针对非目标节肢动物的环境风险评估的新方法。特别是我们专注于在我们的大学开发的新的多种维生素玉米(Naqvi等,2009),从而产生了β-胡萝卜素,抗坏血酸和叶酸的含量提高。我们认为,对于植物和节肢动物水平的GM玉米而言,问题的表述变得极为复杂。首先,尽管胡萝卜素和其他维生素的功能在植物中的研究相对很好,但对生物体化植物如何调节代谢途径如何增加这些化合物的产生以及它们是相关的权衡的鲜明的知识知之甚少。第二,对昆虫系统中维生素的研究很少,尤其是在营养水平之间的运动。我们提出Zyginidia scutellaris(Auchenorryncha:cicadellidae)作为指标物种,以评估GM玉米的风险,以使用先前现场试验的最佳预测功率与复制关系,以使用最佳预测功率与非目标食草动物进行指导。此外,我们假设该物种是建立指标玉米营养链的基础,因为它是玉米领域中最丰富的草食动物。为了探索叶霍普斯作为指标的适用性,我们介绍了有关抗昆虫和除草剂耐除草剂的转基因作物和非GM品种对不同叶hopper物种的影响的文献综述。引言新一代的转基因作物正在全球开发。最后,我们建议一种生态风险评估是检测多种维生素作物潜在级联作用的唯一方法。关键词:cicadellidae,生物面积玉米,多种维生素玉米,风险评估,问题制定1.这些新一代作物中的许多通常意味着植物的修改代谢,因为基因组学的最新进展允许靶向生物胁迫的新耐受性基因(例如,涉及凝集素,RNAi等)非生物胁迫(例如容忍干旱,盐,热和未来的“气候就绪”作物),并以改良的代谢来设计其他作物,这些作物赋予植物所需的属性,例如生物种植作物。对非目标节肢动物(NTA)的环境风险评估的基础,该原则是针对迄今为止商业化的耐除草剂和受昆虫保护的GM农作物完成的,现在需要应用于这些新的生物种植作物。在本文中,我们首先处理了维生素生物种植的作物,我们探索了潜在收养国家(主要是非洲大陆)当前监管框架的基础。其次,我们研究GM多种维生素玉米(MVM)的情况
地球被恰当地描述为一个沿海星球( Martínez 等人,2007 )。沿海区被定义为距离海岸不到 100 公里且海拔不到 10 米的陆地,是地球表面水体与陆地之间的线性界面,长度超过 160 万公里。地球表面的这一重要特征非常长,可以绕赤道 402 圈( Martínez 等人,2007 )或延伸到月球并返回两圈。虽然沿海海洋占全球海洋表面面积的 8%( Cracknell,1999 ),但它占海洋有机物总量的 14-30%( Gattuso 等人,1998 )。沿海海洋(指海岸与大陆架边缘之间的海洋区域)和相关的沿海环境处于气候变暖的前沿。二氧化碳浓度不断上升,导致大气变暖,目前年均浓度接近 420 ppm(https://www.esrl.noaa.gov),导致海平面上升,并可能导致沿海水文、洋流和天气发生变化。冰川和冰盖融化导致海平面上升,有可能导致沿海社区被淹没(Vitousek 等人,2017 年)以及沿海侵蚀加剧(Zhang 等人,2004 年),而海水变暖预计将加剧热带气旋的严重程度(Sobel 等人,2016 年)。有记录显示,随着气候变暖趋势导致热带物种向极地迁移( Pinsky 等人,2013 ),珊瑚礁发生大规模白化( Heron 等人,2017 ),海洋生态系统生物多样性遭到破坏。除了气候因素外,不断增长的沿海人口也对他们生存和繁衍所需的海洋服务施加了压力。目前,全球 27% 的人口生活在沿海地区( Kummu 等人,2016 )。预计到本世纪中叶,这一人口将增加近一倍( Neumann 等人,2015 ),这将增加不断变化的沿海环境的压力。过去 100 年里,人类对沿海资源的依赖和开发导致沿海和内陆水生栖息地发生越来越剧烈的变化( Turpie 等人,2017 )。目前,全球人均海产品消费量占所有动物蛋白的 6%,是国际贸易量最大的食品商品(Smith 等人,2010 年)。水产养殖在消费海产品供应中所占的比例越来越大。随着人口增长和气候变化,这一趋势预计将持续下去(Wells 等人,2015 年)。此外,沿海水生栖息地的压力导致了许多对人类和水生生态系统有害的浮游植物物种的出现(Anderson 等人,2002 年)。例如,水产养殖产生的废弃营养物会助长有害藻华(HAB)的形成。有毒的赤潮和无毒或入侵性浮游植物物种的过度生长会破坏生态系统的功能,并影响食物和水资源。这些变化主要源于人为的富营养化(Glibert 等人,2005 年;Anderson,2009 年)。过量的藻类会降低光线的穿透力,对水柱和底栖生物的光合作用产生负面影响。一些藻华的生长速度可能快于自然食草动物的消耗速度。