在激光驱动惯性约束聚变 (ICF) 中,高强度激光用于驱动胶囊达到核聚变所需的压力和温度条件 [1]。这需要多束重叠的激光束在聚变胶囊周围的等离子体中传播。等离子体介导激光束之间的能量转移,这可能会破坏能量耦合和/或导致辐照不均匀性 [2, 3]。为了解释这种跨光束能量转移 (CBET),在用于模拟 ICF 实验的流体动力学代码中实现了线性模型 [4, 5]。预测这种能量转移的能力对于所有激光驱动 ICF 概念的成功都至关重要。光束之间的功率传输对等离子体条件很敏感。图 1(a) 突出显示了 CBET 对离子温度的敏感性,强调了准确的模型在确定等离子体条件以预测其对内爆的影响方面的重要性。等离子体条件的不确定性导致在建模和实验可观测量之间隔离误差的挑战 [6],这使人们很难理解线性 CBET 理论的局限性 [7]。粒子内模拟表明,当离子声波被驱动到大振幅时,非线性效应将改变能量传递,导致偏离线性 CBET 理论 [8, 9]。早期的实验似乎证实了这一情况,表明需要非线性物理来模拟相互作用,但这些实验主要依靠流体动力学建模来确定等离子体条件 [10, 11],而由于等离子体条件的不确定性,对饱和物理的理解难以捉摸。迄今为止最完整的研究使用电子等离子体波的汤姆逊散射来测量电子温度和密度,同时测量能量传递 [12, 13]。在较小的离子声波振幅(δn/ne < 1%)下,这些实验可以通过线性 CBET 理论很好地建模,但对于较大的离子声波
♦ 将电网连接规模减半(或减少三分之二) – ◊ 降低可再生能源农场的资本成本,◊ 相应减少年度电网连接费用,◊ 大大减少所需的电网加固;♦ 储能与可再生能源农场共享电网连接 – ◊ 免除电网连接成本和年度费用;♦ 可再生能源农场通过“专线”将其能源“出售”给储能 – ◊ 免除风电场销售能源的电网接入费,◊ 免除储能购买能源的电网接入费,◊ 为两者提供长期 PPA;♦ 储能为电网增加增值服务,包括 – ◊ 输出能源是可调度的而不是间歇性的,◊ 平衡服务,如 FRR 和 FCR ◊ 惯性、无功功率/负载、黑启动等(见下文)。
抽象的简介和目的。长链ω-3 PUFA,例如DHA和EPA,通常在藻类和鱼类中以高量存在。dha特别是对大脑的正确进展和功能至关重要,因为它是大脑中ω-3 PUFA的主要结构成分。这使其成为神经膜磷脂的必不可少元素。本文的目的是介绍omega-3酸在神经系统功能中的帮助。知识状态。文本讨论了文献综述,重点是omega-3脂肪酸的影响。多不饱和脂肪酸(PUFAS)对于整体健康至关重要,并且已广泛研究了它们对人类福祉和疾病管理的贡献。最近的研究表明它们在预防和治疗各种疾病方面的有效性。Omega-3 Pufas已被确定为治疗剂,特别是在抗击心血管和神经退行性疾病等炎症状况时。材料和方法。本文的目的是介绍omega-3脂肪酸增强的好处。我们使用了概述大脑中多不饱和脂肪酸的特性的出版物,使用PubMed平台回顾了呈现多不饱和脂肪酸结果的文章。评论包括关键词“ Omega-3脂肪酸”,“ DHA”,“ EPA”,“ PUFA”。摘要。该评论设法介绍了omega-3脂肪酸对脑发育,衰老和对治疗诸如阿尔茨海默氏病和耐药性癫痫等疾病的有用补充的影响。通过接受多项研究,作者就补充PUFA的方法面对了各种专家的观点。此外,结论是适当剂量的海洋鱼油不会引起任何严重的副作用。考虑到它们对神经系统的广泛积极影响,每个人都应消耗它们。
根据世界卫生组织的总结,“心血管疾病是世界上死亡的主要原因,占全球死亡的30%”,这些死亡与动脉粥样硬化有关,这是血液胆固醇的积累,因此会导致动脉中的脂肪凝聚,这会导致其堵塞。因此,许多人寻求包括营养策略在内的治疗方法,以改善甚至可以防止血脂水平和炎症标志物的不良变化。因此,这项研究旨在分析饱和和不饱和脂肪酸的影响的差异可导致心血管健康和脂质剖面血液检查。通过阅读来自各个国家的科学文章和准则,可以验证单不饱和和多不饱和脂质替换饱和脂肪会促进炎症标志物的降低,从而改善了发育不良的治疗方法,并主要降低心血管风险。关键字:脂肪酸;治疗;心血管;验血;血脂血症。摘要根据世界卫生组织的摘要:“心血管疾病是死亡荣耀的主要原因,占全球死亡的30%。”这些死亡与动脉粥样硬化有关,该动脉粥样硬化是血液中胆固醇的积累,导致动脉中脂肪积聚,最终导致阻塞。因此,许多人寻求包括营养策略在内的治疗方法,以改善甚至预防血脂水平和信息标记的不良变化。因此,这项研究旨在分析饱和和不饱和脂肪酸对心血管健康和血液学测试脂质概况的影响的差异。 div>通过对科学艺术的评论很重要,您可以告诉心血管风险。 div>关键字:脂肪酸;治疗;心血管;血液学检查;血脂异常。 div>根据世界卫生组织的总结,“心血管疾病是世界上死亡的主要原因,占全球死亡的30%。” div>这些死亡与动脉粥样硬化有关,这是血液胆固醇的积累,这会导致脂肪在动脉中的积累,并最终导致障碍物。 div>结果,许多人寻求包括营养策略在内的治疗方法,以改善甚至可以防止血脂水平和炎症标志物的不必要变化。 div>因此,本研究旨在分析饱和和不饱和脂肪酸可以对脂质剖面的心血管健康和血液学测试产生的影响的差异。 div>关键字:脂肪酸;治疗;心血管;血液学检查;血脂异常。 div>通过阅读来自多个国家的科学文章和指南,可以验证替代单不饱和和多不饱和脂质饱和的脂肪会促进炎症标志物的降低,从而改善了血脂异常的治疗方法,主要减少心血管风险。 div>
Egill Juliusson,以前是Landsvirkjun 1简介核和地热工业开始发布截至1950年代的饱和蒸汽流量研发。碳氢化合物生产行业在1990年代开始对湿天然气计量研发变得更加感兴趣。具有饱和蒸汽和湿天然气流是两相流量计量挑战,初始湿天然气流量计量研究包含现有的饱和蒸汽计量方法。但是,碳氢化合物行业的研发的随后方向与蒸汽行业的研发有所不同。碳氢化合物行业的两相测定开发并没有倾向于渗透回,或者至少没有被蒸汽行业采用。通常缺乏独立行业之间的沟通和思想转移。碳氢化合物生产行业已经开发了流量计量技术,如果只有知识转移,可能会使包括可再生能源领域在内的其他行业受益。
在本文中,研究了具有传感器饱和的可再生能量微电网的分布式状态估计问题。提出了具有传感器饱和的微电网的系统模型。注意力集中在分布式递归估计方案的设计上,以便在传感器饱和的存在下,保证了估计误差协方差的上限。随后,通过适当设计相应状态估计器的增益矩阵来最大程度地减少这种上限。特别是,通过使用矩阵简化方法来处理由网络拓扑产生的增益矩阵的稀疏性。通过分析均等意义中估计误差的指数界限来进行设计的分布式状态估计器的性能评估。最后,在两种情况下进行了模拟实验,在可再生能量微电网上进行,该元素包含两个分布式生成单元。模拟结果表明,发达的状态估计方案具有有效性。关键词:Microgrid;传感器饱和;电力系统;分布式状态估计;递归状态估计。
。CC-BY 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2023 年 6 月 10 日发布。;https://doi.org/10.1101/2023.06.10.542698 doi:bioRxiv 预印本
抽象睡眠强烈影响突触强度,这对于认知,尤其是学习和记忆形成至关重要。睡眠剥夺是否以及如何调节人类脑生理和认知尚未得到充分理解。在这里我们检查了如何通过经颅磁刺激(a)长期增强(LTP)的诱导性(LTP)和长期抑郁(LTD)的可诱导性(类似于经颅直流电流刺激(TDCS)和(C)和(C)和(C)学习,(C)学习,以及注意力,并注意。结果表明,由于增强了与谷氨酸相关的皮质促进作用,睡眠剥夺使皮质兴奋性上升兴奋性,并减少和/或逆转GABA能皮质抑制。此外,TDCS诱导的LTP样可塑性(阳极)废除了抑制性LTD样可塑性(PORTODAL)在睡眠剥夺下转化为兴奋性LTP样的可塑性。这与由于睡眠压力引起的EEG theta振荡增加有关。最后,我们表明,学习和记忆形成,可塑性的行为对应物以及依赖皮质兴奋性的工作记忆和注意力在睡眠剥夺过程中受到损害。我们的数据表明,由于睡眠不足而导致的高尺度大脑兴奋性和可塑性改变与认知性能受损有关。除了显示脑生理学和认知如何发生变化(从神经生理学到高阶认知)在睡眠中是否存在变化 - 确保这些发现对可变性和最佳应用无创脑刺激具有影响。
电子邮件:1 s.laafar@gmail.com 摘要 本文讨论了 CoolMOS 功率晶体管的宏建模。正在建立一个能够提供准确结果的新型功率 CoolMOS 晶体管宏模型。它基于将 CoolMOS 功率晶体管细分为本征 MOSFET、JFET、齐纳二极管和电压控制电压源。所有这些组件都包含在一个子电路中,以描述功率 CoolMOS 晶体管的饱和和准饱和等效应。本文将在介绍新的子电路模型的同时清楚地解释这些影响以及参数提取过程。通过将所提出的模型在 PSpice 下的仿真结果与制造商提供的数据表结果以及英飞凌科技提供的模型进行比较,验证了所提出的模型的有效性。我们的模型为直流特性的所有工作区域提供了准确的描述。它给出的输出特性平均误差百分比小于 5.5%。
摘要诱导的极化方法(IP)方法具有强大的潜力,可以更好地表征我们星球的临界区域,尤其是在以多相流动为特征的区域中。散装,表面和正交电导率与孔隙水饱和度之间的功率 - 功率 - 差异可能可用于绘制地下水分含量分布。然而,已经观察到这些功率流行关系中的饱和指数n和p随着地材料的质地和孔隙流体的湿气而变化。实验室中的传统实验设置不允许独立可视化孔隙流体分布。因此,两个饱和指数的物理解释尚不清楚。我们使用粘土涂层的玻璃珠开发了一种新型的毫米 - 流体微型模型,该玻璃珠具有出色的可见性和高IP响应。通过实验室实验,我们同时确定了微型模块的复合电导率,并通过此类多孔材料获得了由排水和吸收产生的相应的孔隙尺度流体分布。基于晶粒的复杂表面电导的升级,进行了复杂电导率的有限元模拟,以确定理想的孔隙流体分布下的饱和指数。结果表明,饱和指数n和p因绝缘流体的神经节大小而变化。饱和指数n和p与饱和孔连接性的变化速率表现出功率差异关系,这是通过计算Euler特征的导数来计算的。这些发现为饱和指数与微观流体分布之间的关系提供了新的物理解释。