cow-pea(Vigna unguiculata)是豆科植物的主食,遍布撒哈拉以南非洲和其他热带和亚热带地区。考虑到预计的气候变化和全球人口增加,Cowpea对炎热气候的适应,对干旱的抵抗力以及固氮功能使其成为面临未来挑战的特别有吸引力的农作物。尽管有这些有益的特征,但由于其对转变和较长的再生时间的重现,cow豆的有效品种的改善在cow豆方面具有挑战性。瞬态基因分析分析可以提供解决方案来减轻这些问题,因为它们允许研究人员在投资时间和资源密集型转型过程之前测试基因编辑结构。在这项研究中,我们开发了一种改进的cow豆原生质体隔离原质量,一种瞬态原生质体测定和一种农业透明测定法,用于初始测试和验证基因编辑构建体和基因表达研究。为了测试这些促销,我们评估了使用聚乙烯糖(PEG)介导的透明二糖(PEG)介导的二苯乙烯(PEG)介导的CRISPR-CAS9构建体的疗效,该序列用拟苯乙烯溶剂酶(PDS)作为靶基因,并用聚乙烯介导的透射率(PEG)介导的透射率。sanger测序从转化的原生质体和农业灌注的cow豆叶子对DNA进行了测序,在目标序列中显示出几个大的缺失。本研究中开发的原生质体系统和农业过滤协议提供了多功能工具来测试基因编辑组合,然后启动植物转化,从而提高了使用活性SGRNA并获得所需的编辑和目标表型的机会。
流体饱和度的定量评估对于页岩油的形成评估很重要。但是,由于成岩成岩矿物质和孔类型的复杂性,目前尚无有效的方法来识别流体发生状态并定量评估湖泊页岩油的流体饱和度。在本文中,提出了一种基于核磁共振(NMR),X射线衍射(XRD)和扫描电子显微镜(SEM)测量的方法来定量评估流体饱和度的方法,用于对Fengcheng地层的页岩样品,Mahu Sag,Mahu Sag,Mahu Sag,中国Jungag。这些研究表明,页岩油岩石主要含有石英,长石,白云岩,方解石和粘土矿物质,它们都会产生有机和无机孔。流体主要以沥青,粘土结合的水,结合水,结合油和可移动油的形式出现。根据这些实验的发现,提出了混合的岩石指数(MI)和泥指数(SI)将页岩油地层分为三种类型,包括沙子,白云岩页岩和泥岩。a t 1 -t 2 2d 2d NMR流体的出现状态表征图被建立,以通过MI,SI和NMR特性识别不同的流体。此外,提出了一种方法来定量计算不同地层中页岩油的结合和可移动流体的系数。最后,提出的方法被成功地应用于河谷形成中的湖间页岩油中,以鉴定流体的发生状态并定量评估流体饱和度。
进行了该系统的综述和荟萃分析,以池进行研究,该研究研究了与SFA摄入有关的2型糖尿病(T2DM)的危害。直到2021年6月,在PubMed,Scopus和Embase数据库中进行了系统搜索,以找到合格的研究。回顾文章或评论,临床试验,横断面研究,妊娠或1型糖尿病患者的研究,动物研究,无访问的文章,以非英语语言发表的文章以及具有系统审查所需的重要数据的文章被排除在荟萃分析之外。随机效应模型用于结合研究特定的结果。包括361,686名参与者和11,865个T2DM事件的13个队列研究。当最高的摄入量与最低摄入量相比,饮食中的棕榈酸(PA)或硬脂酸(SA)与T2DM的风险无关(HR = 0.99; 95%CI:95%CI:0.91,1.91,1.09,1.09; n = 13; n = 13的总SFA; 1.08; 95%CI:0.79,1.49; 然而,与最低类别的饮食女劳酸(HR = 0.89; 95%CI:0.82,0.97; n = 2)相比,T2DM的风险最高11%,与最低类别的Myristar Acid(MA)(MA)(HR = 0.83; 95%CI:0.74:0.74,0.74,0.74,0.74,0.74,0.74,0.74,0.74; 95%CI:0.82,0.97; n = 2)降低了17%。 有关于饮食总SFA和T2DM的研究之间出版偏见的证据。 我们的结果表明,饮食总SFA和T2DM风险之间没有显着关联。 然而,MA的饮食摄入与发展T2DM是负相关的。当最高的摄入量与最低摄入量相比,饮食中的棕榈酸(PA)或硬脂酸(SA)与T2DM的风险无关(HR = 0.99; 95%CI:95%CI:0.91,1.91,1.09,1.09; n = 13; n = 13的总SFA; 1.08; 95%CI:0.79,1.49;然而,与最低类别的饮食女劳酸(HR = 0.89; 95%CI:0.82,0.97; n = 2)相比,T2DM的风险最高11%,与最低类别的Myristar Acid(MA)(MA)(HR = 0.83; 95%CI:0.74:0.74,0.74,0.74,0.74,0.74,0.74,0.74,0.74; 95%CI:0.82,0.97; n = 2)降低了17%。有关于饮食总SFA和T2DM的研究之间出版偏见的证据。我们的结果表明,饮食总SFA和T2DM风险之间没有显着关联。然而,MA的饮食摄入与发展T2DM是负相关的。Adv Nutr 2022; 13:2125–2135。
在新型植物育种技术 (NPBT) 中,CRISPR/Cas9 系统是用于靶基因编辑的有用工具,可快速改良植物的性状。该技术允许同时靶向一个或多个序列,以及通过同源定向重组引入新的遗传变异。然而,CRISPR/Cas9 技术对于某些多倍体木本植物来说仍然是一个挑战,因为必须同时靶向需要突变的所有不同等位基因。在这项工作中,我们描述了改进的方案,使用农杆菌介导的转化将 CRISPR/Cas9 系统应用于高丛蓝莓 (Vaccinium corymbosum L.)。作为概念验证,我们靶向编码八氢番茄红素去饱和酶的基因,该基因的突变会破坏叶绿素的生物合成,从而可以直观评估敲除效率。离体培养的蓝莓 cv. 的叶片外植体。 Berkeley 已用 CRISPR/Cas9 构建体进行转化,该构建体包含两个针对 pds 两个保守基因区域的向导 RNA(gRNA1 和 gRNA2),随后在富含卡那霉素的选择培养基中维持。在选择培养基中培养 4 周后,分离出卡那霉素抗性株系,并通过 Sanger 测序对这些株系进行基因分型,结果显示基因编辑成功。一些突变株系包括白化表型,即使两种 gRNA 的编辑效率都很低,gRNA1 的编辑效率在 2.1% 到 9.6% 之间,gRNA2 的编辑效率在 3.0% 到 23.8% 之间。这里我们展示了一种非常有效的高丛蓝莓商业品种“伯克利”的不定芽再生协议,以及在 Vaccinium corymbosum L. 中使用 CRISPR/Cas9 系统的进一步改进,为通过生物技术方法介导的育种开辟了道路。
Ulavathi S. Mahabaleshwar ca 乌克兰国家科学院单晶体研究所,Nauky Ave. 60,哈尔科夫 31001,乌克兰 b VN Karazin 哈尔科夫国立大学 4,Svoboda Sq.,哈尔科夫,61022,乌克兰 c 达万格雷大学 Shivagangotri 数学系,达万格雷,印度 577 007 *通讯作者:michaelkopp0165@gmail.com 收到日期:2022 年 9 月 23 日;修订日期:2022 年 10 月 30 日;接受日期:2022 年 11 月 3 日 纳米流体和微生物饱和的多孔介质中的热对流研究是许多地球物理和工程应用的重要问题。纳米流体和微生物混合物的概念引起了许多研究人员的兴趣,因为它能够改善热性能,从而提高传热速率。此特性在电子冷却系统和生物应用中都得到了广泛的应用。因此,本研究的目的是研究在垂直磁场存在下,多孔介质中的生物热不稳定性,该介质被含有旋转微生物的水基纳米流体饱和。考虑到自然和技术情况下都存在外部磁场,我们决定进行这项理论研究。使用 Darcy-Brinkman 模型,对自由边界的对流不稳定性进行了线性分析,同时考虑了布朗扩散和热泳动的影响。使用 Galerkin 方法进行这项分析研究。我们已经确定传热是通过没有振荡运动的稳态对流完成的。在稳态对流状态下,分析了金属氧化物纳米流体(Al 2 O 3 )、金属纳米流体( Cu 、Ag)和半导体纳米流体( TiO 2 、SiO 2 )。增加钱德拉塞卡数和达西数可显著提高系统稳定性,但增加孔隙度和改变生物对流瑞利-达西数会加速不稳定性的开始。为了确定热量和质量传输的瞬态行为,应用了基于傅里叶级数表示的非线性理论。在较短的时间间隔内,过渡的努塞尔特数和舍伍德数表现出振荡特性。时间间隔内的舍伍德数(质量传输)比努塞尔特数(热传输)更快达到稳定值。这项研究可能有助于海洋地壳中的海水对流以及生物传感器的构造。关键词:纳米流体、生物热对流、洛伦兹力、热泳动、布朗运动、旋转微生物、磁场 PACS:44.10.+i、44.30.+v、47.20.-k 1. 简介 土力学、地下水水文学、石油工程、工业过滤、粉末冶金、核能等领域的许多理论和实践研究都是基于对多孔介质流动物理学的研究。石油工程师和地球物理流体动力学家对多孔介质中的此类流动非常感兴趣。多孔介质中液层的热不稳定性问题尤为重要。Ingham 和 Pop [1] 以及 Nield 和 Bejan [2] 对大多数多孔介质对流研究进行了出色的综述。Vadasz [3] 在最近的一篇综述中详细研究了旋转多孔介质中的流体流动和传热问题。随着纳米技术的进步,尺寸小于一百纳米的物体已经发展起来。这种纳米尺寸的物体称为纳米颗粒。Choi [4] 建议将这些纳米颗粒悬浮在基液(称为纳米流体)中,以提高基液的导热性和对流传热。因此,纳米流体开始在工业中得到广泛应用,例如冷却剂、润滑剂、热交换器、微通道散热器等等。 Buongiorno [5] 广泛研究了纳米流体中的对流输送,并致力于解释在对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了充满纳米流体的多孔介质中热不稳定性开始的情况,其中考虑了布朗运动和纳米颗粒热泳动。他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括纳米流体的应用十分广泛,例如润滑剂、热交换器、微通道散热器等等。Buongiorno [5] 广泛研究了纳米流体中的对流输送,并着重解释对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了饱和纳米流体的多孔介质中热不稳定性他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括纳米流体的应用十分广泛,例如润滑剂、热交换器、微通道散热器等等。Buongiorno [5] 广泛研究了纳米流体中的对流输送,并着重解释对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了饱和纳米流体的多孔介质中热不稳定性他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括
印刷电子是一个充满活力的研究和技术领域,可获得按需功能元件。[1–3] 近年来,已报道了具有半导体、[4] 光电、[5] 储能[6] 和磁性 [7] 特性的印刷电子。特别是印刷磁阻传感器已证明其作为非接触式电磁开关 [8,9] 和非接触式交互式皮肤平台的相关性。[10] 这些磁敏感复合材料是通过将铁磁磁阻 (MR) 颗粒或薄片分散在各种凝胶状或热塑性粘合剂溶液中而制成的(表 1)。[9–17] 虽然这些贡献在过去十年中显著推动了该领域的发展,但由于组成颗粒或薄片的复杂性和高生产成本,这些技术的大规模应用仍未实现。表现出高达 37% 的巨磁电阻效应 (GMR) 的薄片由多层异质结构组成,需要逐层沉积亚纳米厚的薄膜。[9–13] 需要精确调整层的厚度以实现可测量的磁阻变化。这导致表现出 GMR 的粉末的生产成本增加。为了解决 GMR 粉末的可扩展性问题,采用了表现出各向异性磁阻 (AMR) 的商品可用铁磁材料颗粒。[14] 然而,测得的 AMR 效应降低到 0.34%。此外,这些 MR 技术通常在 500 mT 以下的磁场下具有线性响应,并且在此之外几乎不敏感。缺乏一种具有强磁阻信号并在宽磁场范围内工作的可打印商品级材料。使用打印技术瞄准更广泛的磁场可以实现新型低成本技术解决方案,从非接触式开关应用到机械的工业监控。采用传统的印刷方法实现大规模生产和高磁场下的线性响应需要新材料的开发。
Egill Juliusson,以前是Landsvirkjun 1简介核和地热工业开始发布截至1950年代的饱和蒸汽流量研发。碳氢化合物生产行业在1990年代开始对湿天然气计量研发变得更加感兴趣。具有饱和蒸汽和湿天然气流是两相流量计量挑战,初始湿天然气流量计量研究包含现有的饱和蒸汽计量方法。但是,碳氢化合物行业的研发的随后方向与蒸汽行业的研发有所不同。碳氢化合物行业的两相测定开发并没有倾向于渗透回,或者至少没有被蒸汽行业采用。通常缺乏独立行业之间的沟通和思想转移。碳氢化合物生产行业已经开发了流量计量技术,如果只有知识转移,可能会使包括可再生能源领域在内的其他行业受益。
亲爱的编辑部 芹菜 ( Apium graveolens L.) 是伞形科的一种具有重要经济价值的叶菜作物,在世界各地广泛种植 [1]。生产上需要通过传统或现代分子遗传改良手段对芹菜进行品质、抗病虫害和晚抽薹等改良。常规育种遗传改良受限于育种周期长、随机性,因此基因工程育种的必要性凸显。精准的基因组编辑技术有可能突破常规育种的局限性。另外,芹菜功能基因组学的研究也对基因组编辑技术的发展提出了更高的要求。相对于其他主要作物,遗传转化体系不成熟和基因编辑技术不够发达已成为芹菜基础研究和遗传改良的瓶颈。 CRISPR/Cas9 系统是一种 RNA 引导的基因组编辑工具,由 Cas9 核酸酶和单向导 RNA(sgRNA)组成,可实现高效的靶向修饰[2,3]。由于其高效性和准确性,CRISPR/Cas9 诱导的基因组编辑已广泛应用于多种植物物种,以改善植物抗性和产量,并研究基因在控制农艺性状中的作用[2-4]。本文首次报道成功建立基于 CRISPR/Cas9 的基因组编辑系统,并通过在芹菜品种‘晋南诗芹’中靶向敲除八氢番茄红素去饱和酶基因(AgPDS)来验证该系统的有效性。 PDS 是类胡萝卜素生物合成中的一种限速酶,它催化无色八氢番茄红素转化为ζ-胡萝卜素,ζ-胡萝卜素进一步转化为番茄红素。它通常用作视觉标记来检测
林奇综合征 (LS) 是一种癌症易感综合征,全球每 300 人中就有 1 人以上患有此病。LS 的临床基因检测可以挽救生命,但由于意义不明确的变异 (VUS),尤其是错义变异的沉重负担而变得复杂。为了应对这一挑战,我们利用了变异效应多重分析 (MAVE) 图,该图覆盖了关键 LS 基因 MSH2 中 17,746 种可能的错义变异中的 94% 以上。在此,为了确定这些功能数据的临床有效性并证明其在大规模变异重新分类中的实用性,我们将它们叠加在包含 15,000 多名在临床基因检测中发现 MMR 基因变异的个体的临床数据库中。对于 47 种具有可用分类的对照变异中的每一个,我们的功能测量结果与临床解释一致,满足了支持或反对致病性的“强”证据的公认阈值。然后,我们使用这些分数尝试对 682 个独特的错义 VUS 进行重新分类,其中 34 个(5.0%)在我们的功能图中被评为有害,与之前公布的其他癌症易感基因的比例一致。与其致病性一致,功能异常的错义变异与 LS 相关癌症的风险显著增加相关。结合功能数据和其他证据,十个变异被重新归类为致病/可能致病,497 个可以移至良性/可能良性。最后,我们将这些功能评分应用于配对的肿瘤正常基因测试,并确定了一组具有双等位基因躯体功能丧失的患者,反映了一种散发性的林奇样综合征,对治疗和亲属风险有明显的影响。这项研究展示了高通量功能分析如何增强可扩展的 VUS 分辨率并前瞻性地为变异分类生成强有力的证据。
摘要 — 本文介绍了一种用于高空长航时 (HALE) 飞机的鲁棒路径跟踪控制器。操作 HALE 飞机的主要控制范例包括基本路径跟踪控制,即在处理非常有限的推力时跟踪参考飞行路径和空速。首要任务是即使在饱和推力期间也要将空速保持在 HALE 飞机的小飞行包线内。对于基本路径跟踪目标,提出了一种混合灵敏度方法,可以轻松处理解耦跟踪和鲁棒性要求。为了处理饱和控制输入,在控制设计中采用了防饱和方案。使用了一种基于观察者的新型混合灵敏度设计,允许直接使用基于反计算的经典防饱和方法。该控制设计在非线性模拟中得到验证,并与基于经典总能量控制的控制器进行了比较。