摘要:在此,我们开发了一个框架来理解第一部分中提出的观测结果。在这个框架中,由于随着水深 H 的减小幅度受限,内潮在变浅时会饱和。从这个框架可以推导出内潮平均能量的估计值;具体来说,能量 h APE i 、能量通量 h FE i 和能量通量发散 › xh FE i 。由于我们观察到耗散 h D i ' › xh FE i ,我们也将 › xh FE i 的估计值解释为 h D i 。这些估计值代表了内潮在内大陆架饱和时的能量参数化。参数化完全取决于深度平均分层和水深测量。总结一下,h APE i 、h FE i 和 › xh FE i 的跨陆架深度依赖性与冲浪区浅滩表面重力波的依赖性类似,这表明内陆架是内潮汐的冲浪区。针对一系列数据集对我们的简单参数化进行的测试表明,它具有广泛的适用性。
内大陆架是冲浪区和中大陆架之间的区域,表面和底部边界层 (BBL) 在此汇合甚至重叠 ( Lentz 1994 )。在这里,横岸风有助于跨内大陆架的输送 ( Fewings 等人 2008 ),而中大陆架的输送则由埃克曼动力学引起的沿岸风驱动。内大陆架的另一个先前未研究过的显著特征是,内大陆架是内潮汐几乎失去所有能量的区域。后者是我们在这里的重点,并引出了内大陆架作为内潮汐冲浪区的作用的新区分 ( Becherer 等人 2021 ,以下简称第二部分 )。这种内部冲浪区,其中内部潮汐以受水深限制的饱和状态存在,具有与表面重力波冲浪区类似的特征(Thornton 和 Guza 1983;Battjes 1988)。内部潮汐要么在当地产生(Sharples 等人 2001;Duda 和 Rainville 2008;Kang 和 Fringer 2010),要么在传播路径较长的偏远地区产生(Nash 等人 2012;Kumar 等人 2019),将大量能量传输到内架(Moum 等人 2007b;Kang 和 Fringer 2012)。在这里,能量被湍流耗散,产生斜压混合,从而导致水体转化。在内架上,内部潮汐在驱动
种子油可用作食用油,也越来越多地用于工业用途。尽管高油酸种子油更适合工业用途,但大多数种子油富含多不饱和脂肪酸 (PUFA),而油酸等单不饱和脂肪酸 (MUFA) 含量较低。亚麻荠油是一种新兴的油籽作物,种子含油量高,且能抵抗环境压力,其含有 60% 的 PUFA 和 30% 的 MUFA。六倍体亚麻荠携带三种 FAD2 同源物,编码脂肪酸去饱和酶 2 (FAD2),负责从油酸合成亚油酸。在本研究中,为了增加亚麻荠籽油中的 MUFA 含量,我们通过 CRISPR-Cas9 介导的基因编辑生成了 CsFAD2 敲除植物,使用包含 DsRed 作为选择标记的 pRedU6fad2EcCas9 载体、用于驱动覆盖三个 CsFAD2 同源物共同区域的单个向导 RNA (sgRNA) 的 U6 启动子以及用于驱动 Cas9 表达的卵细胞特异性启动子。我们使用来自转化亚麻荠叶片的基因组 DNA 通过 PCR 分析了 CsFAD2 同源物特异性序列。三对 FAD2 同源物的敲除导致矮小的丛生表型,但大大提高了种子中的 MUFA 水平(提高了 80%)。然而,具有两对 CsFAD2 同源物的转化子被敲除,但另一对野生型杂合子显示正常生长,种子 MUFA 产量增加了 60%。这些结果为通过基因组编辑影响多倍体作物生长的基因代谢工程提供了基础。
在本文中,研究了具有传感器饱和的可再生能量微电网的分布式状态估计问题。提出了具有传感器饱和的微电网的系统模型。注意力集中在分布式递归估计方案的设计上,以便在传感器饱和的存在下,保证了估计误差协方差的上限。随后,通过适当设计相应状态估计器的增益矩阵来最大程度地减少这种上限。特别是,通过使用矩阵简化方法来处理由网络拓扑产生的增益矩阵的稀疏性。通过分析均等意义中估计误差的指数界限来进行设计的分布式状态估计器的性能评估。最后,在两种情况下进行了模拟实验,在可再生能量微电网上进行,该元素包含两个分布式生成单元。模拟结果表明,发达的状态估计方案具有有效性。关键词:Microgrid;传感器饱和;电力系统;分布式状态估计;递归状态估计。
在激光驱动惯性约束聚变 (ICF) 中,高强度激光用于驱动胶囊达到核聚变所需的压力和温度条件 [1]。这需要多束重叠的激光束在聚变胶囊周围的等离子体中传播。等离子体介导激光束之间的能量转移,这可能会破坏能量耦合和/或导致辐照不均匀性 [2, 3]。为了解释这种跨光束能量转移 (CBET),在用于模拟 ICF 实验的流体动力学代码中实现了线性模型 [4, 5]。预测这种能量转移的能力对于所有激光驱动 ICF 概念的成功都至关重要。光束之间的功率传输对等离子体条件很敏感。图 1(a) 突出显示了 CBET 对离子温度的敏感性,强调了准确的模型在确定等离子体条件以预测其对内爆的影响方面的重要性。等离子体条件的不确定性导致在建模和实验可观测量之间隔离误差的挑战 [6],这使人们很难理解线性 CBET 理论的局限性 [7]。粒子内模拟表明,当离子声波被驱动到大振幅时,非线性效应将改变能量传递,导致偏离线性 CBET 理论 [8, 9]。早期的实验似乎证实了这一情况,表明需要非线性物理来模拟相互作用,但这些实验主要依靠流体动力学建模来确定等离子体条件 [10, 11],而由于等离子体条件的不确定性,对饱和物理的理解难以捉摸。迄今为止最完整的研究使用电子等离子体波的汤姆逊散射来测量电子温度和密度,同时测量能量传递 [12, 13]。在较小的离子声波振幅(δn/ne < 1%)下,这些实验可以通过线性 CBET 理论很好地建模,但对于较大的离子声波
1 波兰科学院 Nencki 实验生物学研究所细胞信号传导和代谢紊乱实验室,02-093 华沙,波兰;a.dobosz@nencki.edu.pl (AMD);j.janikiewicz@nencki.edu.pl (JJ);a.dziewulska@nencki.edu.pl (AD) 2 波兰科学院核物理研究所跨学科研究部,31-342 克拉科夫,波兰;anna.maria.borkowska@uj.edu.pl (AMB);Ewelina.Lipiec@ifj.edu.pl (EL); Wojciech.Kwiatek@ifj.edu.pl (WMK) 3 波兰克拉科夫雅盖隆大学物理、天文与应用计算机科学学院,30-348 4 波兰科学院 Nencki 实验生物学研究所分子医学生物化学实验室,02-093 华沙,波兰;p.dobrzyn@nencki.edu.pl * 通讯地址:a.dobrzyn@nencki.edu.pl © 检查 ^ x 更新
对从自然界借用这种聪明的认可范式的潜力感兴趣,以解决立体选择性的综合挑战性主题。在本说明中,我们报告了在基态下参与推定的C -H··N/π相互作用的类固醇夹管。然而,一组互补的C - H··O氢键决定了在过渡态中与选择液的反应的高度非映选择性且显然是对比型磺酰基的氟化。我们开始使用脱氢表雄酮(DHEA)研究,这是一种必不可少的人类类固醇,也以prasterone的名称在药品上使用。5我们认为,DHEA对药物相关的ENONE 6的氧化将提供合适的手柄,以使类固醇骨骼的功能降低具有芳族部分,具有适当的方向,可以将分子内部堆叠在类固醇的α-或β-面上。7因此,根据我们先前发布的协议进行了DHEA二乙烯酮衍生物的简洁合成,其次是8,然后是
B化学与化学生物学系B化学与生物工程系,伦斯勒理工学院,Troy,Troy,纽约12180,美国
高级FRP系统的FRP饱和剂210 HT已设计用于使用碳,玻璃或Kevlar纤维增强织物的温度加固。这种零VOC的环氧树脂Novolac增强树脂提供了高度交联的聚合物主链,可在高达395°F的温度下出色地保留增强性能。用FRP饱和剂210 HT制成的复合材料具有出色的化学,热休克和耐腐蚀性。碳纤维复合材料的强度比钢的强度比的10倍以上。
♦ 将电网连接规模减半(或减少三分之二) – ◊ 降低可再生能源农场的资本成本,◊ 相应减少年度电网连接费用,◊ 大大减少所需的电网加固;♦ 储能与可再生能源农场共享电网连接 – ◊ 免除电网连接成本和年度费用;♦ 可再生能源农场通过“专线”将其能源“出售”给储能 – ◊ 免除风电场销售能源的电网接入费,◊ 免除储能购买能源的电网接入费,◊ 为两者提供长期 PPA;♦ 储能为电网增加增值服务,包括 – ◊ 输出能源是可调度的而不是间歇性的,◊ 平衡服务,如 FRR 和 FCR ◊ 惯性、无功功率/负载、黑启动等(见下文)。
