量子密钥分发 (QKD) 允许两个合法实体 Alice 和 Bob 共享一组密钥,但可能会被窃听者 Eve 操纵 [1–5]。目前,离散变量 (DV) QKD 已经得到发展,但它在源准备、检测成本和密钥速率方面仍然面临挑战 [6,7]。连续变量 (CV) QKD 是实现 QKD 的另一种方法 [8–13]。它具有实现方便的优势,因为它可以使用多种源,如相干态 [14] 和压缩态 [15]。尽管如此,CVQKD 也面临着实际安全性的威胁 [16–18],原因是设备不完善、技术缺陷和操作不完善 [10,19,20]。例如,Eve 可以通过控制波长相关分束器 (BS) 的透射率来执行波长攻击 [21-23]。校准攻击可以通过修改本振 (LO) 脉冲的形状来实施 [24]。因此,已经提出了多种对策来抵消 LO 校准攻击和波长攻击的影响 [25-27]。在 CVQKD 的实际实现中,相干探测器变得脆弱。目前,在窃听零差探测器中的不完美电子时已经执行了饱和攻击 [2, 28]。它可以用于攻击系统的实际设备,因此它唤醒了实际的安全性,因为相干探测器具有有限线性域,可以通过移动接收到的正交的平均值将其驱动到外部(如果没有被监控)。此外,Eve 可以执行异差检测来测量截获的正交 X 和 P,从而为伪造相干态做准备 [28, 29]。为了抵消这种攻击,我们可以在同差探测器中采用嵌入式可调光滤波器 (AOF),用于实时补偿强接收光功率导致的潜在饱和。基于检测响应的反馈,可以使用支持 AOF 的检测来抵消这种饱和攻击,这是雪崩光电二极管 (APD) 的实际增益调整。
无人机和巡飞弹(又称“自杀无人机”)对武装部队构成了重大挑战,最近的冲突就是明证。其中一个例子就是 HESA Shahed 136,这是一种低成本、高耐久性的巡飞弹,具有大载荷能力和精确打击能力。当前针对中短程空中威胁的系统大多依赖于传统的防空系统设计。这些系统是为了摧毁战斗机或直升机而开发的。因此,它们对付作战无人机的性能非常差,而且成本过高。另一方面,提供成本效益高的效应器的枪基系统射程有限,命中率低。最糟糕的情况是一群低成本无人机发动饱和攻击。
新型威胁难以探测和跟踪,尤其是那些具有隐身特性、高超音速、低空运动、小型高机动以及使用饱和攻击战术的威胁。面对此类威胁,现有监视雷达系统在探测范围、角域覆盖、跟踪和识别能力方面已达到极限。因此,本主题的目标是通过实现先进的高性能和高度集成的多功能系统来完善所需的技术和概念,以满足态势感知的需求,该系统可通过开发有源电子扫描阵列 (AESA) 天线来实现,该系统可在可行和有利的情况下支持雷达、电子战 (EW) 和可能的通信功能。
摘要。随着计算、传感和车辆电子技术的进步,自动驾驶汽车正在成为现实。对于自动驾驶,雷达、激光雷达和视觉传感器等环境感知传感器作为车辆的眼睛发挥着核心作用;因此,它们的可靠性不容妥协。在本研究中,我们提出了一种通过中继攻击进行欺骗,它不仅可以在激光雷达输出中引起错觉,还可以使错觉看起来比欺骗设备的位置更近。在最近的一项研究中,前一种攻击被证明是有效的,但后一种攻击从未被证明过。此外,我们提出了一种针对激光雷达的新型饱和攻击,它可以完全使激光雷达无法感知某个方向。这两种方法的有效性都已通过 Velodyne 的 VLP-16 实验验证。
受到经典加密硬件的方法的启发,我们考虑在QKD安全评估的背景下使用攻击等级。为了说明这种方法的相关性,我们对两种不同的攻击策略进行了针对饱和攻击的CV-QKD的实验漏洞评估。第一个策略依赖于通过执行大型连贯的位移来诱导检测器饱和度。该策略在实验上具有挑战性,因此转化为高攻击评级。我们还提出并在实验上展示了第二种攻击策略,该策略仅包括用外部激光饱和检测器。我们获得的低评分表明,这种攻击构成了实用CV-QKD系统的质威胁。这些结果强调了将理论安全考虑与基于攻击评级相结合的漏洞分析的好处,以指导实用QKD系统的设计和工程达到最高可能的安全标准。
摘要。无人机集群具有低成本、大规模、高自主性等特点,逐渐成为军事情报领域的一个新研究方向,广泛应用于突防侦察、诱饵干扰、大面积饱和攻击、区域封控等作战任务。因此,空中集群对抗将成为对抗过程中空战的主旋律之一,集群飞机个体性能指标决定了集群整体水平,较差的个体性能将使得集群不能有效完成任务,优异的个体性能完成任务,但会带来集群成本的增加,因此在空中集群对抗想定中,根据目标性能合理配置个体性能变得重要。本文基于创新微分博弈理论,研究集群高动态追击想定中飞机的有效拦截,研究拦截机个体性能与目标飞机之间的关系,为军事领域飞机总体指标设计提供有效参考。
定向能武器 (DEW)、电磁发射器和脉冲功率系统等技术已经发展到可以考虑用于未来军事行动,尤其是海军行动的程度。事实上,高能激光 (HEL) 在海军舰艇上的首次演示最近蓬勃发展,增加了人们对高功率光纤激光器的兴趣。高功率微波 (HPM) 系统也正在成为一种有前途的中和无人机的技术,特别是在饱和攻击场景中。基于电磁加速的系统,如电磁炮和电磁弹射器,在技术准备方面取得了显著进展。目前,电磁炮可以以非常高的速度(> 2 公里/秒)发射射弹,射程超过 200 公里。这些技术需要高功率和/或高能量发电机。电能存储和功率倍增方面的最新进展使得现在可以考虑在水面战舰上实施这些技术。电动武器系统,包括激光、高功率微波和电磁炮,可以为海军部队在海上作战场景中提供显著的作战优势,因为这些系统对导弹、飞机和无人机特别有效。特别关注非对称威胁,在这些威胁中,成本效益高的对策至关重要,以及需要快速自我保护的新型常规威胁。此外,电动武器的实施可能会影响船舶结构、危险、标准、设备兼容性和隐身性,所有这些都需要仔细评估。