• 全球亚热带和温带地区干旱期的频率和长度正在增加。表观遗传对水分胁迫的反应可能是植物抵御这些难以预测的挑战的关键。实验性 DNA 去甲基化与应激因子的应用相结合是揭示表观遗传学对植物应激反应贡献的适当策略。• 在温室中,我们分析了用 5-氮杂胞苷对种子进行去甲基化和/或反复受水胁迫后,一年生地中海草本植物 Erodium cicutarium 成年植株叶片胞嘧啶甲基化的变化。我们使用亚硫酸盐 RADseq (BsRADseq) 和新报道的 E. cicutarium 参考基因组,以 2 9 2 因子设计表征甲基化变化,控制植物相关性。 • 从长期来看,仅用 5-氮杂胞苷处理会导致单个胞嘧啶的低甲基化和高甲基化,在 CG 环境中会出现显著的低甲基化。在对照条件下,干旱导致除 CHH 环境中所有环境中的甲基化减少。相反,经历反复水胁迫并用 5-氮杂胞苷处理的植物的基因组使 DNA 甲基化水平增加约 5%。• 种子去甲基化和反复干旱在整体和特定环境中的胞嘧啶甲基化方面产生了高度显著的相互作用。大多数甲基化变化发生在基因区域周围和转座因子内。这些与基因相关的差异甲基化区域的注释包括几个在应激反应中具有潜在作用的基因(例如 PAL、CDKC 和 ABCF),证实了表观遗传在分子水平上应对应激的贡献。
伏消纳的主要手段,在电力网中合理配置能源储存 的位置和容量,可以改变负荷和风力发电的时空特 性,进而改变电网的传输性能,解决输电线路阻塞 和过负荷的问题。文献 [7] 考虑储能和可再生能源 之间的互补性,以综合成本最低为目标构建输储规 划模型;文献 [8] 引入了一种自适应最小 - 最大 - 最小 成本模型,以找到新线路和储能的鲁棒最佳扩建规 划;文献 [9] 则从储能带来的效益出发,将商业储能 的选址、定容问题和线路扩展规划集成起来,构建 输储规划模型;文献 [10] 针对输电线路和储能系统 的综合规划,提出了一种连续时间混合随机 / 鲁棒优 化方法;文献 [11] 针对输电工程的扩建落后于风力 装机容量的发展,提出了一种考虑低压侧直供潜力 的协调规划方法;文献 [12] 总结了能源互联网的基 本概念和特点,对其基本结构框架进行了详细分 析,通过高通滤波的控制策略来平抑新能源功率的 波动;文献 [13] 提出依据风电预测误差,利用储能的 快速调节能力,提出考虑预测误差的储能控制策 略,从而进行平抑风电功率波动;文献 [14] 研究了多 区域电力系统储能优化配置问题,采用迭代算法将 原问题进行分解为多个子系统储能配置问题;文献 [15] 综合考虑多种经济因素,为追求最低经济成本, 建立一种分阶段的输储规划模型。需要指出的是, 输电网络约束的引入增加了输储规划模型的求解 难度,并且现有的输储协同规划研究主要集中于储 能和线路的扩建,考虑风光互补的输储联合规划的 研究很少。 面对大规模风光并网的输电网规划问题,本文 首先综合考虑风光互补特性和储能的运行特性,进 行输电线路规划,使储能成本、年弃风弃光成本和 输电线路成本最小化,其次提出 3 个评价指标来评
摘要印度尼西亚是具有生态系统,物种和遗传学多样性的大型多样性国家之一。Tabat Barito(ficus deltoidea)是一种药用植物,传统上用于天然壮阳药对女性的天然壮阳药,此外,这种植物还具有抗菌,抗糖尿病,抗毒性,抗高血压和抗癌的好处。这项研究研究了药代动力学预测和纤维甲状腺菌中包含的酚类化合物的潜在生物学活性,包括香草酸,奎宁酸和硫酸化合物。使用Swissadme WebTool进行了药代动力学分析,同时使用Way2Drug进行生物活性。药代动力学分析的结果表明,香草酸和硫酸具有良好和高胃肠道吸收,而奎宁酸的吸收率较低。此外,只有硫酸才能穿透大脑的血液。使用PASS对生物学活性的预测表明,香草酸起作用是氯多酮还原酶抑制剂,具有抑制癌细胞增殖的潜力。奎尼酸充当糖磷酸酶抑制剂,这对于对代谢性疾病的细胞反应很重要,而硫酸酸性酸性酸性酸性酸性酸性酸性抗毒素-Cytoothrome-C还原酶抑制剂对抑制肿瘤的生长很重要。这些结果增强了酚类化合物在治疗应用中的可能性,尤其是用于癌症治疗和代谢疾病。
图 5. Quizartinib 和 4ACP 在 FLT3 ATP 结合位点的结合模式。(A)、(C) Quizartinb 和 4ACP 分别在 FLT3 酶的 ATP 结合位点的 3D 结合相互作用(PDB 代码:4XUF,DFG-out 构象)。Quizartinib 和 4ACP 表示为具有白色骨架的棒,相互作用的氨基酸表示为具有绿色骨架的棒,DFG 基序显示为黄色棒,氢键
萜类化合物是一大类具有商业用途的天然产物。微生物生产萜类化合物被认为是稳定供应这些复杂碳氢化合物的可行方法。蓝藻是一种光合原核生物,是可持续生物生产的有吸引力的宿主,因为这些自养生物只需要光和二氧化碳就能生长。尽管蓝藻已被改造成生产各种化合物,但它们的萜类化合物生产率通常较低。需要进一步研究以确定提高蓝藻萜类化合物产量的瓶颈反应。在这项研究中,我们对快速生长的蓝藻 Synechococcus elongatus UTEX 2973 进行了改造,使其生产一种商业用途的萜类化合物柠檬烯。我们在编码香叶基香叶基焦磷酸合酶 crtE 的基因中发现了一个有益的突变,导致柠檬烯产量增加了 2.5 倍。工程菌株以每天 8.2 mg L 1 的速率生产了 16.4 mg L 1 的柠檬烯,比之前报道的其他蓝藻物种的柠檬烯产量高出 8 倍。此外,我们采用了组合代谢工程方法来优化参与柠檬烯生物合成上游途径的基因。通过调节编码 MEP 途径中的酶和香叶基焦磷酸合酶的基因的表达,我们表明优化表达水平对于提高蓝藻中的柠檬烯产量至关重要。
进行了直齿轮耐久性试验和滚动体表面疲劳试验,以研究真空感应熔炼、真空电弧熔炼 (VIM-VAR) M50NiL 钢在先进飞机应用中用作齿轮钢,以确定其耐久性特性。并将结果与标准 VAR 和 VIM-VAR AISI 9310 齿轮材料的结果进行比较。使用由 VIM-VAR M50NiL 和 VAR 以及 VIM-VAR AISI 9310 制造的直齿轮和滚动接触杆进行了测试。齿轮节圆直径为 8.9 厘米 (3.5 英寸)。齿轮试验条件为入口油温为 320 K (116 F ),出口油温为 350 K (170 F ),最大赫兹应力为 1.71 GPa (248 ksi),转速为 10 000 rpm。在环境温度下进行台式滚动元件疲劳试验,杆速为 12 500 rpm,最大赫兹应力为 4.83 GPa (700 ksi)。VIM-VAR M5ONiL 齿轮的表面疲劳寿命分别是 VIM-VAR 和 VAR AISI 9310 齿轮的 4.5 倍和 11.5 倍。VIM-VAR M5ONiL 滚动接触杆的表面疲劳寿命分别是VIM-VAR 和 VAR AISI 9310。VIM-VAR M50NiL 材料表现出良好的抗疲劳剥落断裂性能,疲劳寿命远远优于 VIM-VAR 和 VAR AISI 9310 齿轮和滚动接触杆。
人类的视野比在分布外情景下表现出的鲁棒性更高。它已经通过逐个合成的分析来猜想这种鲁棒性益处。我们的论文通过通过渲染和能力算法在神经特征上进行近似分析,以一致的方式制定三重视觉任务。在这项工作中,我们引入了神经丝线可变形的网格(NTDM),该网格涉及具有变形几何形状的OBJECT模型,该模型允许对摄像机参数和对象几何形状进行优化。可变形的网格被参数化为神经场,并被全表面神经纹理图所覆盖,该图被训练以具有空间歧视性。在推断过程中,我们使用可区分渲染来最大程度地重建目标特征映射,从而提取测试图像的特征图,然后对模型的3D姿势和形状参数进行优化。我们表明,在现实世界图像,甚至在挑战分布外情景(例如闭塞和主要转变)上进行评估时,我们的分析比传统的神经网络更强大。在经常性能测试测试时,我们的算法与标准算法具有竞争力。
摘要:我们在本文中提出了一个新概念,以基于一种称为有向光氧化诱导的转化(DPIC)的机制产生双色光转换探针。作为对这种机制的支持,含有芳香的单重氧反应性部分(如呋喃和吡咯)的苯乙烯香豆素(SC)已合成。sc是明亮的荧光团,由于ASORM的定向光氧化而导致可见光的光辐射,它会在可见的光照射下进行高营养转化,从而导致共轭破坏。sc-p,带有吡咯部分的黄色发射探针,转换为稳定的蓝色发射香豆素,具有68 nm的偏移,从而使光转换和跟踪活细胞中的脂质液滴跟踪。这种新方法可能会为新一代的光转换染料铺平道路,用于高级生物成像应用。
水非常重要。没有水,我们就无法生存。人们很早就知道水的重要性,并尽其所能地获得更多的水。人们用音乐来祈求更多的雨水。人们创造了一种乐器来祈求更多的雨水。根据人们居住的地方不同,这种乐器由不同的材料制成。例如,在非洲的部分地区,这种乐器是用竹子制成的。在美洲的部分地区,它是由仙人掌制成的。你能猜出这是什么乐器吗?它是雨棒。雨棒对世界各地的人们来说仍然非常重要,在一些地方仍然在使用。今天,你将用你自己的材料制作自己的雨棒。
rs-class.org › 行业 › getIndustry 2016 年 6 月 21 日 — 2016 年 6 月 21 日 钛合金薄板、板材、棒材和型材;... 钛合金 IIT-3B 锻件和锻棒,直径从 120 do/到 700 mm。