摘要 — 本文介绍了一种用于高空长航时 (HALE) 飞机的鲁棒路径跟踪控制器。操作 HALE 飞机的主要控制范例包括基本路径跟踪控制,即在处理非常有限的推力时跟踪参考飞行路径和空速。首要任务是即使在饱和推力期间也要将空速保持在 HALE 飞机的小飞行包线内。对于基本路径跟踪目标,提出了一种混合灵敏度方法,可以轻松处理解耦跟踪和鲁棒性要求。为了处理饱和控制输入,在控制设计中采用了防饱和方案。使用了一种基于观察者的新型混合灵敏度设计,允许直接使用基于反计算的经典防饱和方法。该控制设计在非线性模拟中得到验证,并与基于经典总能量控制的控制器进行了比较。
Lubrizol Advanced Materials, Inc.(“Lubrizol”)希望您对此建议的配方感兴趣,但请注意,这只是一种代表性配方,并非商业化产品。在适用法律允许的最大范围内,Lubrizol 不作任何陈述、保证或担保(无论是明示、暗示、法定或其他形式),包括任何关于适销性或特定用途适用性的暗示担保,或关于任何信息的完整性、准确性或及时性的暗示担保。Lubrizol 认为此配方所基于的信息和数据是可靠的,但该配方尚未经过性能、功效或安全性测试。在商业化之前,您应彻底测试该配方或其任何变体,包括配方的包装方式,以确定其性能、功效和安全性。您有责任获得任何必要的政府批准、许可或注册。本文所包含的任何内容均不得视为未经专利所有者许可而实施任何专利发明的许可、建议或诱导。与此配方相关的任何索赔可能并非在所有司法管辖区都获得批准。安全处理信息不包括安全使用所需的产品安全信息。操作前,请阅读所有产品和安全数据表以及容器标签,了解安全使用和物理及健康危害信息。您可从路博润代表或经销商处获取此配方路博润产品的安全数据表。
抽象的咀嚼棒和海绵用于加纳和其他非洲国家的口腔卫生。除了可负担性外,它们还具有抗微生物和Ti-Plague特性的其他优势。它们通常在较低的卫生条件下在公开市场上出售,使它们暴露于环境病原体中。由于使用前大多未对其进行灭菌,因此筛查存在对随机选择的样品的重要性重要性很重要。这项初步研究使用了分子测定法对轮状病毒A,Salella Typhi,Vibrio Cholerae和Escherichia Coli进行筛选10个咀嚼棒和海绵样品,从Accra的Agbogbloshie市场随机购买。在室温下将样品在无菌蒸馏水中孵育过夜,以清除病原体。脱落的病原体。使用RADI Prep DNA/RNA试剂盒从浓缩物中提取总核酸。使用2X SYBR绿色混合物和病原体特异性引物进行所有PCR分析。在筛查的四种病原体中,仅检测到大肠杆菌(分别为40%和60%的咀嚼海绵和棍子样品)。尽管咀嚼棍棒和海绵具有优势,但在样品上检测大肠杆菌是引起关注的原因,因为它们表明粪便污染并可能引起腹泻疾病。建议在用于口腔健康之前清洁咀嚼棒和海绵。另一种选择是培训当地生产商和零售商,以改善这些基本清洁剂的卫生包装老化和处理。
随着人工智能生成的文本越来越像人类书写的内容,检测机器生成文本的能力变得至关重要。为了应对这一挑战,我们提出了 GPTWatermark,这是一种强大而高质量的解决方案,旨在确定一段文本是否源自特定模型。我们的方法扩展了现有的水印策略,并采用固定组设计来增强对编辑和释义攻击的鲁棒性。我们表明,我们的带水印的语言模型在生成质量、检测正确性和针对规避攻击的安全性方面享有强有力的可证明保证。在各种大型语言模型 (LLM) 和不同数据集上的实验结果表明,我们的方法实现了卓越的检测准确率和可比的复杂度生成质量,从而促进了 LLM 的负责任使用。代码可在 https://github. com/XuandongZhao/GPTWatermark 获得。
人类和机器都使用语音识别系统。各种研究人员已经开发了许多语音识别系统。例如语音识别、说话人验证和说话人识别。语音识别系统的基本阶段是预处理、特征提取、特征选择和分类。已经进行了大量工作来改进所有这些阶段以获得准确和更好的结果。本文主要关注在语音识别系统中添加机器学习。本文介绍了 ASR 的架构,有助于了解语音识别系统的基本阶段。然后重点介绍了机器学习在 ASR 中的应用。本文的一部分还介绍了各种研究人员使用支持向量机和人工神经网络所做的工作。除了这篇评论外,还介绍了使用 SVM、ELM、ANN、朴素贝叶斯和 kNN 分类器所做的工作。模拟结果表明,使用 ELM 分类器可实现最佳准确度。本文的最后一部分介绍了使用所提出的方法获得的结果,其中使用了 SVM、带有 Cuckoo 搜索算法的 ANN 和带有反向传播分类器的 ANN。重点还在于改进预处理和特征提取过程。
摘要 — 我们提出了一种新的混合系统,使用多目标遗传算法在灰度图像上自动生成和训练量子启发分类器。我们定义了一个动态适应度函数,以获得最小的电路和对看不见的数据的最高准确度,确保所提出的技术具有通用性和鲁棒性。我们通过惩罚它们的出现来最小化生成的电路在纠缠门数量方面的复杂性。我们使用两种降维方法来减小图像的大小:主成分分析 (PCA),它在个体中编码以进行优化,以及一个小型卷积自动编码器 (CAE)。将这两种方法相互比较并与经典的非线性方法进行比较,以了解它们的行为并确保分类能力归因于量子电路而不是用于降维的预处理技术。
替代树脂系统的树脂系统,2023年6月,由Sphera Solutions,Inc。为Exxonmobil技术和工程公司编写。这项研究已根据独立的第三方关键审查小组确认根据ISO 14067:2018(温室气体 - 产品的碳足迹 - 要求和定量指南)进行确认。**在这项生命周期评估(LCA)研究中评估的所有树脂均涉及成型应用中使用的类型。具体来说,环氧树脂系统是VARTM风叶片生产中使用的类型。树脂系统代表配制的树脂系统,包括任何必需的固化硬化剂或催化剂。敏感性范围是聚氨酯,乙烯基酯和环氧系统的基于文献综述和Sphera Solutions,Inc。的数据。
图3:li稳定性和Allzofim的短路电阻。(a)Allzo电解膜的电流响应在Li +从LI计数器电极到PT工作电极的电化学运输后,并反向相反。数字表示进行阻抗光谱测量的点。(b)在多个拼布和剥离的步骤后,AllzoFim部件与LI金属接触的阻抗响应的Nyquist图。插图显示了从阻抗光谱中提取的电解质电阻的演变。(c)对称LI/LI/LI细胞配置中Allzo电解质膜的电静脉反应。正向和反向电流密度范围为0。2 mA cm - 2最多3。2 mA cm -2以0的步骤施加。1 mA H CM - 2。