ISSN印刷:2617-4693 ISSN在线:2617-4707 IJABR 2025; 9(1):22-30 www.biochemjournal.com收到:02-11-2024接受:03-12-2024 NILAKSHI TALUKDAR食品科学与技术计划,阿萨姆邦农业大学园艺系,印度阿萨姆邦,印度阿萨姆邦,印度阿萨姆邦农业大学,印度阿萨姆邦,罗宾斯拉·钱德拉·沃克罗(Robin Chandra Chandra Boro)农业学系。Jorhat,印度阿萨姆邦Manashi Das Purkayastha食品科学技术计划,阿萨姆邦农业大学园艺系,印度乔尔哈特,印度坦克斯瓦尔·纳特农业生物技术系,阿萨姆邦农业大学。Jorhat, Assam, India Sunayana Rathi Department of Biochemistry & Agricultural Chemistry, Assam Agricultural University, Jorhat, Assam, India Dr. Kritideepan Sarmah Department of Biochemistry & Agricultural Chemistry, Assam Agricultural University, Jorhat, Assam, India Corresponding Author: Dr. Kritideepan Sarmah Department of Biochemistry & Agricultural印度阿萨姆邦乔哈特的阿萨姆邦农业大学化学
1. 组建工作组 组建一个跨职能的可持续发展报告工作组,其代表来自可持续发展、战略、财务、风险、法律和投资者关系等职能。工作组应有适当级别的高管支持。 2. 了解法人实体要求和治理义务 考虑澳大利亚征求意见稿中的法人实体规模门槛以及它可能如何适用于您的企业。同时考虑与不同公司内容(如年度报告、广告、网站)的漂绿相关的新风险。 3. 进行差距分析 审查澳大利亚可持续发展报告标准草案中提出的要求,并与您现有的气候披露进行比较。考虑现有披露实践、报告政策和流程与这些要求相关的潜在差距。考虑您的系统、流程和控制是否足以支持未来的披露和保证要求。 4. 商定优先事项并制定可持续发展报告路线图 确保就可持续发展所需的变革达成一致和协议。建立向高管和董事会的持续项目报告。
水风信子(WH)是含水层的主要害虫,也是污染环境的香蕉皮废物的主要害虫。WH和香蕉皮有可能产生羧甲基纤维素(CMC)和果胶。CMC和果胶都适用于制造的水凝胶,这些水凝胶专注于天然成分,以用作食品包装材料。将CMC和果胶作为水凝胶材料的应用非常出色,可提高其机械,可生物降解和环境友好的特性。这项研究确定了柠檬酸作为交联剂对基于CMC-肽水凝胶的肿胀特性的影响,并研究了其官能团。通过提取WH纤维素开始杂交CMC-果胶水凝胶的制备。通过漂白和脱脂纤维素过程。纤维素通过两个步骤(碱化和羧甲基化)修改为CMC。在碱化阶段,将纤维素与NaOH 10%溶液混合。为羧甲基化,氯乙酸氮含量(Na-Ca)加入并在55°C下搅拌3.5小时。将水凝胶的制造与5%的比率70:30(w/w。%)的CMC:果胶:果胶。柠檬酸(CA)作为交联药,浓度为5%,10%和15%,用于热处理。混合生物混合凝胶(HBH)的结果是半透明的薄片膜,颜色是褐色。HBH CMC/果胶与以柠檬酸形式添加的交联剂(5%)的肿胀能力最高(6.64 wt。,在1小时内)。另外,通过傅立叶转化红外光谱法(FTIR)分析观察到羧基与羟基的存在。
评估了次氯酸钠对香蕉卫生的功效,并评估了从哥斯达黎加到美国的模拟出口运输过程中大肠杆菌对香蕉的生存。香蕉(Musa spp。,AAA组,Cavendish子组)被大肠杆菌ATCC 25922(7 log cfu/g)接种,然后将五分钟浸入次氯酸钠溶液中(0、50、50、100、100、150和200 ppm)在模拟的出口运输条件下(14±1°C;相对湿度为85–90%;聚集在聚乙烯袋和纸板箱中)的在模拟出口传输条件下(14±1°C; 85–90%的相对湿度)监测了在香蕉表面上的大肠杆菌群体。 大肠杆菌在储存的0、1、5、7、12和14天以35±2°C孵育24小时以0、1、5、7、12和14天的储存。试验一式三份进行。 次氯酸钠浓度为100 ppm或更高的大肠杆菌减少至少3型。 在100至200 ppm的消毒剂之间没有发现显着差异(P≥0.05)。 储存时间显着影响(p≤0.05)大肠杆菌种群。 大约3-log在模拟出口传输条件下(14±1°C; 85–90%的相对湿度)监测了在香蕉表面上的大肠杆菌群体。大肠杆菌在储存的0、1、5、7、12和14天以35±2°C孵育24小时以0、1、5、7、12和14天的储存。试验一式三份进行。次氯酸钠浓度为100 ppm或更高的大肠杆菌减少至少3型。在100至200 ppm的消毒剂之间没有发现显着差异(P≥0.05)。储存时间显着影响(p≤0.05)大肠杆菌种群。大约3-log
在最近的科学中,纳米技术是研究人员的燃烧领域。纳米技术涉及在一维中大小为1-100 nm的纳米颗粒,与医学化学,原子理和所有其他已知领域有关。本研究报告了一种使用香蕉皮提取物(BPE)作为还原和上限剂合成银纳米颗粒的环保,成本效益,快速而简单的方法。研究了影响还原银的不同因素。条件是硝酸银(1.75毫米),BPE(20.4 mg干重),pH(4.5)和孵育时间(72 h)。bpe可以在加热反应混合物(40-100c)后5分钟内将银离子降低到银纳米颗粒中,如发达的红棕色所示。使用UV,FTIR表征生物合成的NP。银纳米颗粒的UV-VIS光谱显示出420,345,545 nm处的特征表面等离子体共振(SPR)峰。银纳米颗粒。。傅立叶变换红外光谱肯定了BPE作为银离子的还原和封盖的作用。银纳米颗粒对细菌的代表性病原体显示有效的抗菌活性,并用作抗真菌剂。合成的纳米颗粒与左氧氟沙星抗生素,抗菌活性并显示植物生长促进活性的协同作用。
通过自然过程 Mohamad Izwan Othman 1、Azlina Bahari 1*、Zurina Abd。 Wahab 1、1 马来西亚敦胡先翁大学工程技术学院电气工程技术系,84600 巴哥,柔佛,马来西亚 * 通讯作者名称 DOI:https://doi.org/10.30880/peat.2022.03.02.048 收到日期:2022 年 6 月 22 日;接受日期:2022 年 11 月 7 日;2022 年 6 月 24 日在线提供 摘要:“替代能源”一词是指来自化石燃料以外来源的能源。当前情况的挑战是如今电池的价格越来越昂贵。由于制造过程。本研究的目的是确定一种可以将果皮废料转化为阳极材料的自然过程。本研究重点是利用香蕉皮废料中的生物材料制造电池的碳基材料,这可能有助于我们在电池中使用更少的碱金属。收集 1 公斤香蕉皮废料,干燥并研磨直至变成灰烬,然后放入玻璃罐中。然后将 300 毫升柠檬汁混合物倒入罐中,让混合物在温暖的地方浸泡 24 小时。24 小时后,将混合物过滤并用水浸泡,然后铺在烤盘上。然后,在烤箱中烘干,直到完全干燥。柠檬汁和热量的结合将激活香蕉皮碳。使用万用表对电池进行测试,以获得点亮负载的电压和电流。扫描电子显微镜用于表征香蕉的活性炭。这项研究证明,使用自然过程可以激活碳并成为未来的替代能源。关键词:香蕉皮废料、电池、替代能源和活性炭
* 通讯作者。电子邮件地址:andrea.serna@utp.edu.co(JA Serna-Jiménez)、q12lulaf@uco.es(F. Luna-Lama)、alvaro.caballero@uco.es(A. Caballero)、iq2masam@uco.es(MA Martín)、iq1chpea@uco.es(AF Chica)、a92siloj@uco.es(JA Siles)。
摘要。本文在现代经济的数字化背景下专门考虑金融体系的特征。作者引用了数字化转型科学知识方法的关键方面。考虑了定义金融体系中数字经济的方法论方法。因此,作为研究的理论部分的材料,收集,系统化,数据和统计参考书是为Bashkortostan共和国联邦州统计局领土机构的统计参考书,使用了共和国政府的报告,分析了材料以确定Moscow Management Skolkovo的数字俄罗斯索引和其他人。许多开放源信息。进行了Bashkortostan共和国数字不平等的定量和定性指标的收集和分析,共和国税收系统数字化指标的统计数据被视为