引言马豆 (Macrotyloma uniflorum (Lam.) Verdc.) 是一种耐寒的半干旱热带豆类作物,对其研究甚少。尽管马豆在印度很大一部分人口的饮食中具有当前和历史重要性,但人们对它存在着根深蒂固的偏见,因为它被认为是穷人的低等食物,尤其是在印度南部 (Kadam 等人,1985 年;Ambasta,1986 年)。对这种作物的科学认识有限,这从教科书中对其地位的描述中可以看出,即使是在其主要生产国印度出版的教科书中也是如此。马豆的研究远少于地位较高的豆类,如印度豇豆 (V. radiata (L.) Wilczek、V. mungo (L.) Hepper) 或木豆 (Cajanus cajan (L.) Millsp)。事实上,虽然印度豇豆属和木豆的野生近缘种都曾接受过专题研究 (Tomooka 等人, . 2014;Khoury 等人 2015;Mallikarjuna 等人 2011)以及与野生近缘种关系的遗传学研究(Aruna 等人 2009;Kassa 等人 2012;Saxena 等人 2014)。直到最近才对马豆进行了小规模的遗传学研究(Sharma 等人 2015)。马豆之所以得名,是因为它几个世纪以来一直被用作马和牛的饲料(Watt 1889-1893),而英国人或地位较高的印度人很少食用它;
季节性的p-葡萄糖酸和抗菌活性的季节性变化。Pharm Biol 46:889-893。Karamat,F,Olry,A,Munakata,R等。 (2014)香豆素 - 特定的pren- yltransferase催化了欧洲裔弗拉诺科·马林形成的关键生物合成反应。 工厂J 77:627-638。 Kohnen -Johannsen,KL和Kayser,O(2019)Tropane生物碱:化学,药理学,生物合成和生产。 分子24:796。 li,H,Ban,Z,Qin,H等。 (2015)一种异源膜 - 霍普的结合前蛋白基 - 转移酶复合物在苦酸途径中催化三种顺序芳族预奈尔。 植物生理学167:650-659。 Luo,X,Reiter,MA,D'Espaux,L等。 (2019a)大麻素及其在酵母中的非天然类似物的完全生物合成。 自然567:123-126。 luo,ZW,Cho,JS和Lee,SY(2019b)微生物炭疽甲酯的微生物产生,葡萄味。 Proc Natl Acad Sci USA 116:10749-10756。 MA,J,GU,Y,Marsafari,M等。 (2020)Yarrowia脂溶剂的合成生物学,系统生物学和代谢工程,可用于可持续的生物填充平台。 J Ind Microbiol Biotechnol 47:845-862。 mori,T,(2020)芳族前转移酶的酶学研究。 J Nat Med 74:501-512。 Munakata,R,Inoue,T,Koeduka,T等。 (2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。 植物生理学166:80-90。 社区生物2:384。Karamat,F,Olry,A,Munakata,R等。(2014)香豆素 - 特定的pren- yltransferase催化了欧洲裔弗拉诺科·马林形成的关键生物合成反应。工厂J 77:627-638。Kohnen -Johannsen,KL和Kayser,O(2019)Tropane生物碱:化学,药理学,生物合成和生产。 分子24:796。 li,H,Ban,Z,Qin,H等。 (2015)一种异源膜 - 霍普的结合前蛋白基 - 转移酶复合物在苦酸途径中催化三种顺序芳族预奈尔。 植物生理学167:650-659。 Luo,X,Reiter,MA,D'Espaux,L等。 (2019a)大麻素及其在酵母中的非天然类似物的完全生物合成。 自然567:123-126。 luo,ZW,Cho,JS和Lee,SY(2019b)微生物炭疽甲酯的微生物产生,葡萄味。 Proc Natl Acad Sci USA 116:10749-10756。 MA,J,GU,Y,Marsafari,M等。 (2020)Yarrowia脂溶剂的合成生物学,系统生物学和代谢工程,可用于可持续的生物填充平台。 J Ind Microbiol Biotechnol 47:845-862。 mori,T,(2020)芳族前转移酶的酶学研究。 J Nat Med 74:501-512。 Munakata,R,Inoue,T,Koeduka,T等。 (2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。 植物生理学166:80-90。 社区生物2:384。Kohnen -Johannsen,KL和Kayser,O(2019)Tropane生物碱:化学,药理学,生物合成和生产。分子24:796。li,H,Ban,Z,Qin,H等。(2015)一种异源膜 - 霍普的结合前蛋白基 - 转移酶复合物在苦酸途径中催化三种顺序芳族预奈尔。植物生理学167:650-659。Luo,X,Reiter,MA,D'Espaux,L等。(2019a)大麻素及其在酵母中的非天然类似物的完全生物合成。自然567:123-126。luo,ZW,Cho,JS和Lee,SY(2019b)微生物炭疽甲酯的微生物产生,葡萄味。Proc Natl Acad Sci USA 116:10749-10756。MA,J,GU,Y,Marsafari,M等。 (2020)Yarrowia脂溶剂的合成生物学,系统生物学和代谢工程,可用于可持续的生物填充平台。 J Ind Microbiol Biotechnol 47:845-862。 mori,T,(2020)芳族前转移酶的酶学研究。 J Nat Med 74:501-512。 Munakata,R,Inoue,T,Koeduka,T等。 (2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。 植物生理学166:80-90。 社区生物2:384。MA,J,GU,Y,Marsafari,M等。(2020)Yarrowia脂溶剂的合成生物学,系统生物学和代谢工程,可用于可持续的生物填充平台。J Ind Microbiol Biotechnol 47:845-862。mori,T,(2020)芳族前转移酶的酶学研究。J Nat Med 74:501-512。Munakata,R,Inoue,T,Koeduka,T等。 (2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。 植物生理学166:80-90。 社区生物2:384。Munakata,R,Inoue,T,Koeduka,T等。(2014)柠檬中的香烷基双磷酸 - 特异性芳基丙烯基转移酶的分子克隆和表征。植物生理学166:80-90。社区生物2:384。Munakata,R,Olry,A,Takemura,T等。 (2021)UBIA超家族蛋白的平行演化为植物中的芳族O-前转移酶。 Proc Natl Acad Sci USA 118:E2022294118。 Munakata,R,Takemura,T,Tatsumi,K等。 (2019)分离用于苯基苯甲酸的毛细血管膜膜 - 结合二苯基转移酶,并在酵母中重新设计Artepillin c的重新设计。 村上,A,Kuki,W,Takahashi,Y等。 (1997)Auraptene,一种香豆素,抑制12 -O-四甲基烷酰基-13-乙酸 - 乙酸 - 诱导的ICR小鼠皮肤中的Tu- Mor促进,可能是通过抑制白血细胞中过氧化含量的产生。 JPN J Cancer Res 88:443-452。 Nishikawa,S,Aoyama,H,Kamiya,M等。 (2016)Artepillin C,一种典型的巴西蜂胶成分,诱导棕色 - 像脂肪细胞在C3H10T1/2细胞中形成,原发性腹股沟白色脂肪组织 -Munakata,R,Olry,A,Takemura,T等。(2021)UBIA超家族蛋白的平行演化为植物中的芳族O-前转移酶。Proc Natl Acad Sci USA 118:E2022294118。Munakata,R,Takemura,T,Tatsumi,K等。 (2019)分离用于苯基苯甲酸的毛细血管膜膜 - 结合二苯基转移酶,并在酵母中重新设计Artepillin c的重新设计。 村上,A,Kuki,W,Takahashi,Y等。 (1997)Auraptene,一种香豆素,抑制12 -O-四甲基烷酰基-13-乙酸 - 乙酸 - 诱导的ICR小鼠皮肤中的Tu- Mor促进,可能是通过抑制白血细胞中过氧化含量的产生。 JPN J Cancer Res 88:443-452。 Nishikawa,S,Aoyama,H,Kamiya,M等。 (2016)Artepillin C,一种典型的巴西蜂胶成分,诱导棕色 - 像脂肪细胞在C3H10T1/2细胞中形成,原发性腹股沟白色脂肪组织 -Munakata,R,Takemura,T,Tatsumi,K等。(2019)分离用于苯基苯甲酸的毛细血管膜膜 - 结合二苯基转移酶,并在酵母中重新设计Artepillin c的重新设计。村上,A,Kuki,W,Takahashi,Y等。(1997)Auraptene,一种香豆素,抑制12 -O-四甲基烷酰基-13-乙酸 - 乙酸 - 诱导的ICR小鼠皮肤中的Tu- Mor促进,可能是通过抑制白血细胞中过氧化含量的产生。JPN J Cancer Res 88:443-452。Nishikawa,S,Aoyama,H,Kamiya,M等。 (2016)Artepillin C,一种典型的巴西蜂胶成分,诱导棕色 - 像脂肪细胞在C3H10T1/2细胞中形成,原发性腹股沟白色脂肪组织 -Nishikawa,S,Aoyama,H,Kamiya,M等。(2016)Artepillin C,一种典型的巴西蜂胶成分,诱导棕色 - 像脂肪细胞在C3H10T1/2细胞中形成,原发性腹股沟白色脂肪组织 -
在遗传诊断和生物化学领域等。使用光合交联的核酸操纵具有以下特征:1)可以在多种条件下使用它,而无需限制pH,温度,盐强度等。2)不需要添加试剂,而3)3)它可以轻松地通过光辐射的时间和能量来控制反应。我们已经报道了各种照片的人造核酸,以及代表性的光杂交链链球菌(CNV K)(CNV K),可以通过辅助DNA或RNA链中的吡啶胺或胞嘧啶等嘧啶基碱(以366的366 Irladions in of thymine或rna strands中的)进行光子交联。此外,可以通过312 nm的照射诱导光电反应,并且可以使用光可逆的操作。与以前已知的牛cor烯和香豆素相比,CNV K及其改进的光交联CNV D具有很高的光反应性,并且已经在市场上。因此,在本演讲中,我打算介绍此超快照片的开发 -
这项研究的目的是使用链霉亲素诱导的糖尿病模型以及其α淀粉酶和α糖苷酶抑制活性来评估抗糖尿病性churna的抗糖尿病特性。[1]特别普遍的代谢疾病之一,糖尿病影响全球2.8%,预计到2025年将达到5.4%。草药长期以来一直被视为一种极为宝贵的药物。结果,它们越来越多地在当代护理中出现。因此,基于综述,药物降低血糖水平的能力主要归因于多酚,类黄酮,萜类化合物,香豆素和其他成分的存在。抗糖尿病冠 - 由翼龙,阿扎尔达里奇塔(Azardirachta),azardirachta,ocimum sanctum,syzygium cumini,trigonella foenum graceum,emblica officinalis,glycyrrhiza glababra,curcyrias salligr sall sall sall sall,抗糖尿病活动。[2]使用淀粉碘和二硝基水杨酸(DNSA)方法进行体外抗糖尿病筛查,该方法涉及α-淀粉酶抑制和IC 50值。[3]粉末特性像灰值,安息角度,密度,散装密度,挖掘密度,lod,pH值一样。每个参数已超过标准限制。
摘要:在不来梅港研讨会期间,对北海德国湾从黑尔戈兰岛到多格尔滩有机和金属污染逐渐减少的 7 个站点以及靠近和远离废弃钻井地点的 3 个站点的 dab Limanda limanda 肝脏的抗氧化酶活性进行了测量。在黑尔戈兰岛附近,过氧化氢酶和谷胱甘肽过氧化物酶的活性较高,与污染程度较高相一致。在多格尔滩,过氧化氢酶和超氧化物歧化酶 (SOD) 活性也较高,但原因尚不清楚。SOD 活性沿着污染物梯度呈现出明显的 U 形曲线,抑制了污染以外因素的影响。假定的 DT-黄酶(双香豆素可抑制的 NADPH 依赖性二氯酚靛酚 [DCPIP] 还原酶)活性在钻井地点附近较高,但这种酶的特征和意义尚不清楚。因此,使用抗氧化酶作为环境氧化应激的生物标志物的案例尚未得到证实,但值得进一步研究。
尽管有许多尝试,但很难获得有关染色体大分子组织及其重复模式的信息。一个攻击点,长期以来一直被认可,但直到最近才无法实现,是对染色体某些组成部分的选择标记,其分布可以在随后的细胞分裂中看到。Reichard和Estborn'表明N15标记的胸苷是脱氧核糖核酸(DNA)的前体,并且没有转移到核糖核酸的合成中。最近Friedkin等人2以及降落和Schweigerl使用C'4标记的胸苷来研究DNA合成。在雏鸡胚胎和乳酸杆菌中,示踪剂没有明显的转移向核糖核酸。鉴于这些发现,胸苷似乎是实验所需的中间体,但是到目前为止使用的标签对于通过自显影手段的显微镜可视化并不令人满意。为了确定细胞中几个单个染色体是否是放射性的,必须获得具有分辨率为染色体尺寸的放射自显影仪。在此级别上的分辨率很难使用大多数同位素获得,因为它们的β颗粒的范围相对较大。理论上的tritium应该提供可获得的最高分辨率,因为β颗粒的最大能量仅为18 keV,对应于照相乳液中的微米范围。因此,应该可以在小(如单个染色体)的颗粒中识别该标签。考虑到这一点;制备trit胸腺标记的胸苷,并用于标记染色体,并通过使用照相emulsions遵循其在以后分裂中的分布。材料和方法。通过从乙酸的羧基催化trib催化tritium到胸苷的嘧啶环中的碳原子(该方法的详细信息),制备了高特异性活性(3 x 101 mc/mm)的trium标记的胸苷(3 x 101 mc/mm)。Vicia Faba(英国宽豆)的幼苗在含有2-3罐/ml放射性胸苷的矿物营养溶液中生长。选择该植物是因为它具有121arge染色体,其中一对在形态上是不同的,并且由于分裂周期的长度和循环中DNA合成时间的长度是在同位素溶液中生长后的4年后,以适当的时间在适当的时间内用水洗涤,并将其彻底洗涤为col col,并转移了col(col),并转移了col(col),并转移了一个saquine(col)。水罐/ml)以进一步增长。以适当的间隔固定在乙醇 - 乙酸中(3:1),在1 N HC1中水解5分钟,用Feulgen反应染色,并在显微镜载玻片上挤压。剥离膜,并如前所述制备放射自显影。5
摘要这项研究介绍了突尼斯角豆豆荚的主要营养成分,通过热水提取(50°C 190分钟)获得的角豆汁的某些特性以及热巴氏杀菌的影响(70°C持续15分钟)。角豆豆荚显示出大量的糖(〜65 g/100 g干物质),可观的蛋白质含量(〜10 g/100 g干物质),灰分的大量含量(3.35 g/100 g干物质)和低水平的脂质(0.28 g/100 g干物质)。相应的果汁是根据物理特征,营养成分,微生物特征和感觉特性来表征的。结果显示高粘度,高含量可溶性糖和缺乏致病性。与参考果汁(水果鸡尾酒汁)相比,长者(80%)对角豆汁的总体可接受性很高。原始的角豆汁在70°C下热巴氏灭菌15分钟。研究了巴氏灭菌对颜色和清晰度,菌群和维生素C含量的影响。观察到菌群数的重要减少,尤其是1900年至270 CFU/mL的总菌群。在2.87到3.01的颜色值中也观察到显着增加,清晰度从0.87到1.04。与生汁相比,在巴氏灭菌汁中的维生素C含量中检测到显着降低。关键字:角豆荚;角豆汁;热水提取;热巴氏杀菌。1。引言角树(Ceratonia Siliqua L.)是地中海国家的常绿植物,包括突尼斯在内,沿海地区天然生长[1]。成熟的新鲜水果(角豆豆荚)由90%的果肉和10%的种子组成。Cacob Pod的营养成分根据角色零件,品种和气候而广泛不同[2]。角豆浆的特征是高糖含量(40-60%),
印度安得拉邦。摘要:该项目是关于开发带有人工智能的吃豆人游戏。吃豆人游戏是一款非常具有挑战性的视频游戏,可用于进行人工智能研究。在这里,我们为吃豆人游戏实施各种人工智能算法的原因是,它有助于我们通过使用可视化来研究人工智能,通过可视化我们可以更有效地理解人工智能。主要目的是构建一个智能吃豆人代理,该代理可以通过迷宫找到最佳路径以找到特定目标,例如特定的食物位置,逃离鬼魂。为此,我们实施了人工智能搜索算法,例如深度优先搜索、广度优先搜索、A*搜索、均匀成本搜索。我们还实施了多代理,例如反射代理、极小最大代理、Alpha-beta 代理。通过这些多代理算法,我们可以让吃豆人根据其环境条件做出反应并逃离鬼魂以获得高分。我们还完成了上述人工智能算法的可视化部分,任何人都可以轻松学习和理解人工智能算法。为了实现算法的可视化,我们使用了 Python 库 matplotlib 和 NetworkX(用于绘制所探索状态的图形)。
