一般认为,尤利西斯·S·格兰特从荒野到彼得斯堡的战役之后弗吉尼亚的军事事件的焦点是蹲在坚固堑壕后面的军队。即使是普通的内战学者也知道罗伯特·E·李经常表达的担心,担心被困在里士满和彼得斯堡的工事中。李将军曾被剥夺了在 1862 年和 1863 年挫败一系列联邦指挥官的机动能力,他认为围城必然会导致北方的胜利。尽管持这种悲观态度,但他还是在 9 个多月的艰苦时间内对南方首都进行了有效的保卫,在 1864 年 7 月下旬的火山口战役中侥幸逃脱,并发动了几次有限的攻势,试图打破格兰特的顽强控制。李在这场旷日持久的围攻中最后一次激进的进攻发生在 1865 年 3 月下旬的斯特德曼堡,那里数千名南方邦联军伤亡,毫无优势。一周之内,五岔河之战和格兰特在彼得斯堡的最后进攻解决了这个问题。在弗吉尼亚战争结束之前,只剩下向阿波马托克斯的漫长撤退。
Roderick A. Earl 是新墨西哥州科特兰空军基地空军作战测试与评估中心总部安全与环境管理主任。他负责中心在 5 个支队和 11 个作战地点的 76 多个主要测试项目的所有安全、健康和环境合规方面的问题。他就安全、职业健康和环境问题向国防部长办公室、空军采购办公室部长、空军主要司令部和其他军种部门和联邦机构提供建议并代表 AFOTEC 指挥官。Earl 先生出生于加利福尼亚州奥兰治,作为空军家庭成员长大,曾与家人一起到过海外各个地方。他于 1985 年加入空军,在科罗拉多州洛瑞空军基地完成了弹药系统技术培训。他曾在菲律宾共和国克拉克空军基地担任弹药控制员;华盛顿州麦科德空军基地高级弹药检查员和运营主管;北达科他州大福克斯空军基地武器安全官和核保障官;新墨西哥州柯特兰空军基地第 377 空军基地联队职业安全主管。他在空军的最后两个现役职位是 AFOTEC 第 1 支队的临时安全经理和新墨西哥州柯特兰空军基地 AFOTEC 总部职业安全主管,在 2005 年从空军退役前,他专门从事化学和生物安全以及定向能安全。退役后,他进入联邦文职部门,并回到 AFOTEC 担任安全副主任,之后担任现任安全和环境管理主任。
iii。新业务463-473 Gorham Street,01852 - 现场计划审查Desanctis Development,LLC已向Lowell Planning Board申请,在463-473 Gorham Street建造了一栋新的住宅建筑。主题财产位于城市混合使用(UMU)分区区,以及多户家庭上升(MFOM)覆盖区。该提案要求根据第11.4节的洛厄尔计划委员会的批准,以审查大于3个住宅单元的开发项目。*申请人要求连续到2025年2月3日会议 * 357 Pawtucket Street,01854 - 特殊许可证和现场计划审查Franco American Holdings,LLC已向Lowell Planning Board申请了在357 Pawtucket Street的80单元混合使用建筑。主题属性位于传统的混合使用(TMU)分区区。该提案要求根据第12.1条和第11.3条的特殊许可批准,以大于11个住宅单位,并根据第11.4节的现场计划审查批准,以大于3个住宅单位的开发项目。
学习是指观察记录额外特征的数据。“学习”或“世界反馈”是通过观察记录额外特征的数据而发生的。记录行动、结果和情境特征实例的“案例”数据是 Gilboa 和 Schmeidler (2001) 提出的基于案例的决策理论的基本概念。将学习视为主体对新数据形式的客观信息的主观反应,可能为研究具有不可预见的偶然事件的学习提供一个有前途的框架。事实上,它可能调和经典的贝叶斯方法,其中新数据仅包含熟悉的情境特征并且仅增加观察频率,以及数据包含决策者迄今未知的“新”特征记录的情况。
2020-2021 合同教师 哈考特巴特勒技术大学,坎普尔 2020-2021 助理教授 坎普尔普拉巴特工程学院 2008-2011 助理教授 坎普尔普拉巴特工程学院 2006-2008 讲师 坎普尔普拉维尔辛格理工学院
我们展示了三种类型的变换,它们在临界状态下建立了厄米和非厄米量子系统之间的联系,可以用共形场论 (CFT) 来描述。对于同时保留能量和纠缠谱的变换,从纠缠熵的对数缩放中获得的相应中心电荷对于厄米和非厄米系统都是相同的。第二种变换虽然保留了能量谱,但不保留纠缠谱。这导致两种类型的系统具有不同的纠缠熵缩放,并导致不同的中心电荷。我们使用应用于自由费米子情况的膨胀方法来展示这种变换。通过这种方法,我们证明了中心电荷为c = −4的非厄米系统可以映射到中心电荷为c = 2的厄米系统。最后,我们研究了参数为φ →− 1 /φ的斐波那契模型中的伽罗瓦共轭,其中变换既不保持能量谱也不保持纠缠谱。我们从纠缠熵的标度特性证明了斐波那契模型及其伽罗瓦共轭与三临界Ising模型/三态Potts模型和具有负中心电荷的Lee-Yang模型相关联。
种子的纯度是决定作物产量,价格和质量的农业中最重要的因素。大米是全球不同形式消费的主要主食。识别高产和高质量的稻田是一项具有挑战性的工作,主要取决于昂贵的分子技术。基于分子实验室技术的实际和日常用法非常昂贵且耗时,并且还涉及几个后勤问题。此外,稻草农民不容易获得这样的技术。因此,需要开发替代,易于访问和快速的方法来正确识别稻田种子品种,尤其是商业重要性。我们已经开发了基于种子图像的IRSVPRED,深度学习,以识别和差异化十种Basmati大米的十种主要品种,即Pusa Basmati 1121(1121)(1121),Pusa Basmati 1509(1509)(1509),Pusa Basmati 1637(1637) ),耐盐的basmati大米品种CSR 30(CSR-30),DEHRADOON BASMATI TYPE-3(DHBT-3),PUSA BASMATI-1(PB-1)(PB-1),PUSA BASMATI-6(PB-6),Basmati -370 -370 (BAS-370),PUSA BASMATI 1718(1718)和PUSA BASMATI 1728(1728)。该方法在训练集(总计61,632张图像)和内部验证集(总计15,408张图像)上的总体准确度分别为100%和97%。此外,研究中使用的所有十个品种(642张图像),已经达到了大于或等于80%的精度。irsvpred Web-Server可以在http://14.14.139.62.220/rice/上免费获得。
pipericilin tazobactam(pit,100/10μg),Ce Fimime(CPM,30μg),CE固定(CFM,5μg),Ceotaxime(CTX,30μg),Ceftazidime(CazIme)(CAZ,30μg,30μg),ImipeNem(ImipeNem(ImipeNem(ImipeNem),ImipeNem(ImipeNem(ImipeNem))(imipnem(ipm,10μg)四环素(TE,3μg),cipro floproxatin(CIP,5μg),Nalidixic Acid(Na,30μg),氯霉素(C,30μg),红霉素(E,15μg),硝基氟烷素(Nitrofurantoin(Nit,300μG) (COT,25μg,1.25/23.75μg)。用于质量控制,使用了ATCC 25922培养。在正常盐水中制备了对生物体的接种,并与0.5 MAC FARLAND标准相比。接种物被擦在MHA板上,并在放置抗生素盘之前干燥5分钟。对于90毫米板,接种了五种不同的抗生素。将板孵育18小时,并用尺度测量抑制区。将抑制区与标准值进行比较。根据临床实验室标准指南(CLSI 2020)测试了抗生素。
4 供应和浇筑符合 IS 456 的设计混合混凝土 M 30 等级,每立方米混凝土最低水泥含量为 400 公斤,使用配料厂(15 立方米/小时),使用 20 毫米 HBG 碎金属 0.512 立方米(708 公斤)、10 毫米 HBG 碎金属 0.354 立方米(472 公斤)和沙子 0.437 立方米(616 公斤),水灰比为 0.45(180 升/立方米混凝土),包括所有材料的成本和运输费用,如水泥、细骨料(沙子)、粗骨料、水和符合 IS 9103-1993 的 1.6 公斤外加剂等,到现场以及所有材料的销售税和其他税费(不包括 GST),包括所有操作、杂费和人工费用,如批量混合、用搅拌车运输混凝土(最长 1 公里)、混凝土泵送、铺设混凝土,固化等,并包括使用钢脚手架管、千斤顶支柱、墙体、脚板、支架、钢定心板等进行定心,完整但不包括钢材成本及其成品的制造费用(APSS 编号 402)