摘要 - 马铃薯(索拉纳姆结核L.)是印尼社会高度要求的至关重要的食物来源。2018年国家马铃薯作物的生产力约为1,284,773吨。提高马铃薯的可用性需要通过扩大耕种区域并采用改进的耕种技术来提高生产率。但是,过度使用无机肥料可能会对土壤生育能力和质量产生不利影响。因此,必须使用有机肥料来增强有机物含量,例如源自加工糖甘蔗残留物的液体有机肥料,从而增强土壤生育能力。因此,本研究旨在确定液体有机肥料的最佳剂量,以增强马铃薯植物的生长和产量。这项研究是从2022年6月至2022年10月在帕苏鲁安摄政区图图尔区的Nongkojajar村进行的。使用了各种工具,包括手持式拖拉机,铭牌,竹子钉,宝石,胶带量,150 L鼓,搅拌钻,5升和250毫升量杯,车辆和相机。格兰诺拉麦片品种的马铃薯种子,液体有机肥料,无机肥料(尿素,SP-36和KCL)以及土壤和水样构成了研究的材料。采用了实验研究方法,利用环境随机块设计(RBD)重复了七种治疗方法。参数所观察到的植物高度,叶子数量,叶子面积,干重,植物生长速率,土壤化学分析,养分吸收和收获分析。结果表明,与没有肥料的对照组相比,在100%剂量下的液体有机肥料的治疗以50%,100%,150%和200% + 80%的无机肥料的剂量综合治疗在马铃薯植物中的生产率较高。此外,这些治疗方法与100%标准剂量的无机肥料相比表现出可比的马铃薯植物生产力。
加工品种,源自1902年的“ Burbank”突变(Bethke等,2014)。世界上有4000多个马铃薯品种,在英国列表中有500多个(Ghimire,2022年)。这表明一旦某种品种吸引了一旦捕捉到一个新的来代替它就很难。为了进一步使繁殖复杂的栽培马铃薯是四倍体的,具有高度的杂合性和同样高的近交抑郁症的可能性(Slater等,2014),需要12-20年的年度,用于开发和释放一种新的马铃薯品种(Bonierbale等人(Bonierbale等,2020年)。它的四倍体性质使得难以繁殖所有四个等位基因的特征,其中所有四个等位基因都必须是基因的最佳版本,例如对疾病的抗性。一旦进行了交叉,所有特征就在发挥作用,并且会重新组合以创建新型的马铃薯类型,但不一定与所需特征的结合,或者只有一个或几个特定的改变特征。此外,
软腐果杆菌(SRP)收集了30多种细菌物种,通过产生和分泌大量的植物细胞壁降级酶(PCWDES),共同腐烂了广泛的植物。全球马铃薯领域调查在有症状的植物和块茎上确定了15种不同的SRP物种。在空间和时间上观察到的每种物种的丰度都会有所不同,而在爆发过程中驱动物种转移的机制尚不清楚。此外,经常观察到多种物种感染,并且这些共同感染的动力学不充分理解。要了解共同感染的含义,我们建立了16个不同的合成群落的6个SRP菌株的合成群落。每个经过测试的社区中存在的细菌代表了2种不同的物种,每个物种有3种菌株。这些群落被接种在马铃薯块茎或合成介质中,其结果随后进行了扩增和散发性管家基因GAP A GAP A的分化和光明测序。我们还比较了混合物种感染和单物种感染期间马铃薯块茎中疾病的发病率和细菌繁殖。一种无法诱导马铃薯散发性的物种有效地维护,并最终在某些测试的社区中占主导地位,表明作弊可以塑造主导物种。建模表明,PCWDES生产和分泌的成本,马铃薯降解的速度以及降级底物的差异率可能有利于作弊者物种。拮抗相互作用是特定的菌株,而不是物种。在马铃薯块茎和合成培养基之间存在差异的结果,突出了环境条件的驱动效应,在马铃薯块茎中产生了较高的拮抗相互作用。在某些社区中也观察到毒性干扰,从而使菌株保持对有毒化合物的敏感。总体而言,结果表明,次级竞争,通过营养相互作用和毒性干扰的合作有助于维持SRP多样性。讨论了这些过程对流行病学监测的含义。
马铃薯是第三大重要粮食作物,但种植面临众多疾病和不利的非生物条件的挑战。为了对抗疾病,经常使用杀菌剂是很常见的。通过基因组编辑敲除易感基因可能是提高抗性的持久选择。DMR6 已被描述为几种作物中的易感基因,根据数据显示,基因功能中断后抗性增加。在马铃薯中,Stdmr6-1 突变体已被描述为在受控条件下对晚疫病病原菌 Phytophthora infestans 具有更高的抗性。在这里,我们展示了连续四年在 P. infestans 种群复杂的地区对 CRISPR/Cas9 突变体进行的田间评估,结果表明对晚疫病的抗性增强,而不会影响产量或块茎质量。此外,对田间试验中马铃薯块茎的研究表明,对普通疮痂病的抗性增强,突变株系在受控条件下表现出对早疫病病原菌 Alternaria solani 的抗性增强。早疫病和疮痂病是马铃薯抗性育种中难以攻克的病害,因为抗性基因非常稀少。Stdmr6-1 突变体所描述的广谱抗性可能进一步扩展到某些非生物胁迫条件。在干旱模拟或盐度的受控实验中,Stdmr6-1 突变体植物受到的影响小于背景品种。总之,这些结果表明 Stdmr6-1 突变体有望成为未来可持续马铃薯种植的有用工具,且没有任何明显的权衡。
我们专门创建负担得起的可改装的马铃薯排序系统。我们的核心任务?用最先进的AI赋予农民权力。使用我们的解决方案,我们希望减少他们的工作量,节省人工成本,并让他们更多地专注于产品和个人生活。我们正在以中小型马铃薯农民为主要市场进行旅途,为农业的进一步负担得起的自动化创新奠定了基础。
马铃薯是第三大重要粮食作物,但种植面临众多疾病和不利的非生物条件的挑战。为了对抗疾病,经常使用杀菌剂是很常见的。通过基因组编辑敲除易感基因可能是提高抗性的持久选择。DMR6 已被描述为几种作物中的易感基因,根据数据显示,基因功能中断后抗性增加。在马铃薯中,Stdmr6-1 突变体已被描述为在受控条件下对晚疫病病原菌 Phytophthora infestans 具有更高的抗性。在这里,我们展示了连续四年在 P. infestans 种群复杂的地区对 CRISPR/Cas9 突变体进行的田间评估,结果表明对晚疫病的抗性增强,而不会影响产量或块茎质量。此外,对田间试验中马铃薯块茎的研究表明,对普通疮痂病的抗性增强,突变株系在受控条件下表现出对早疫病病原菌 Alternaria solani 的抗性增强。早疫病和疮痂病是马铃薯抗性育种中难以攻克的病害,因为抗性基因非常稀少。Stdmr6-1 突变体所描述的广谱抗性可能进一步扩展到某些非生物胁迫条件。在干旱模拟或盐度的受控实验中,Stdmr6-1 突变体植物受到的影响小于背景品种。总之,这些结果表明 Stdmr6-1 突变体有望成为未来可持续马铃薯种植的有用工具,且没有任何明显的权衡。
使用软木虫切开同一直径的马铃薯圆柱体。修剪圆柱体,使它们的长度相同。准确测量并记录每个马铃薯缸的长度和质量。测量0.5 m盐溶液的10 cm 3,并放入第一个沸腾管中。将沸腾管标记为:0.5 m盐。测量0.25 m盐溶液中的10 cm 3,然后放入第二个沸腾管中。将沸腾管标记为:0.25 m盐。测量蒸馏水的10厘米3,并放入第三管。将沸腾管标记为水。将一个马铃薯缸在每个沸腾管中加入。确保您知道每个沸腾管中每个土豆缸的长度和质量。将马铃薯气缸放在沸腾管中一个小时/在试管架上过夜。从沸腾管中取下圆柱体,然后用纸巾小心地将它们擦干。重新测量每个圆柱体的长度和质量。公平测试:盐溶液相同的盐溶液/盐溶液中的盐缸的长度和直径/溶液中的时间长度
在仪器和建模方面的持续发展使大气科学越来越复杂,对概念,机制和相互作用的理解更加复杂。这是创新建立的领域,这使人们对与气氛的复杂性有了更好的欣赏。人类的生活在这种复杂性中交织在一起,因为我们努力更好地了解我们的气氛。气候变化不断扩大我们思维的局限性,并迫使新的想法和概念播放。欢迎来到拟人化!
摘要:属于芽孢杆菌属的物种会产生许多有利的细胞外临界,这些细胞外象征在商业规模上具有巨大的应用,用于纺织品,洗涤剂,饲料,食品和饮料行业。这项研究旨在与当地环境分离出有效的热耐淀粉和纤维素细菌。使用盒子 - 贝恩肯的设计响应表面方法论,我们进一步优化了淀粉酶和纤维素酶活性。通过16S rRNA基因测序将分离株鉴定为枯草芽孢杆菌Qy4。这项研究利用马铃薯果皮废料(PPW)作为生物材料,在开放环境中过度倾倒。干燥PPW的营养状况是通过近距离分析确定的。在250 ml erlenmeyer量中进行了所有实验运行,该量含有酸处理的PPW作为底物,由耐热的枯草脂肪酸盐Qy4在37°C下孵育72 h,在浸没发酵中孵育72 h。结果表明,与酸治疗相比,稀释的H 2 SO稀释辅助高压灭菌治疗有利于产生更多的淀粉酶(0.601 IU/mL/min),而在稀酸治疗中观察到高纤维素酶的产生(1.269 IU/mL/min),并且在稀酸治疗中观察到,并且与酸辅助治疗相比非常有效。确定的P值,F值和系数证明了模型的重要意义。这些结果表明,PPW可以可持续地用于生产酶,这些酶在各种工业阵列中,尤其是在生物燃料生产中。