越来越多的公共数据集显示出对自动器官细分和图检测的显着影响。但是,由于每个数据集的大小和部分标记的问题,以及对各种肿瘤的有限侵入,因此所得的模型通常仅限于细分特定的器官/肿瘤,以及ig- ignore ignore ignore的解剖结构的语义,也可以将其扩展到新颖的Domains。为了解决这些问题,我们提出了剪辑驱动的通用模型,该模型结合了从对比的语言图像预训练(剪辑)到细分模型中学到的文本嵌入。这个基于夹子的标签编码捕获了解剖学关系,使模型能够学习结构化特征嵌入和段25个器官和6种类型的肿瘤。提出的模型是从14个数据集的组装中开发的,使用总共3,410张CT扫描进行培训,然后对3个附加数据集进行了6,162个外部CT扫描进行评估。我们首先在医疗细分十项全能(MSD)公共排行榜上排名第一,并在颅库(BTCV)之外实现最先进的结果。此外,与数据集特异性模型相比,大学模型在计算上更有效(更快6英制),从不同站点进行CT扫描更好,并且在新任务上表现出更强的传输学习绩效。
今天有3,100家持牌运营商,但行业观察家估计,只有大约四分之一的活动。已获得了接近2,500条指南的许可。旅游班酒店也从1991年之前的七个旅馆发展到53个国际“旅游班”酒店和旅馆,提供1,807张床,到2002年。到2016年,国外和地区游客共有267家酒店,有10,278张床。128位于3至5星类别及以上。自2016年以来,估计有132家酒店(三星级及以上)在Thimphu和Paro(TCB数字)中得到批准。2星及以下的预算酒店的数量也在增加。Air BNB是一种全球在线住宿预订系统,宣传约70个或更多的不丹物业,使区域游客能够直接预订。将近一半的地区游客留在预算酒店,而这些住宿的收入不可用。同样,对不丹的区域游客进行的TCB调查表明,平均而言,调查的地区游客的一半单独从正常旅行成本中支出约5,530/-apart。这是国际游客总支出的一小部分,国际游客代表了总访客的三分之一。
已建立的技术:超过45个国家已经将DHIS2用于其国家免疫计划,而36个国家使用DHIS2进行Covid-19-19的监视现有能力:MOH已实施了DHIS2多年了; DHIS2专家的13个区域HISP集团可自定义的工具:DHIS2完全可自定义,使国家团队可以掌握其系统的所有权,并修改它们以满足当地需求和不断变化的需求。全球标准:HISP与谁和其他全球合作伙伴合作,以确保DHIS2工具包建立在全球标准上,以易于整合,分析和互操作性可持续性投资:向国家提供实施,培训和基础设施的资金,从而有助于长期目标,从而有助于加强卫生系统数字公共善良:DHIS2免费和开放式卫生系统。所有应用程序,移动应用,工具,培训材料,平台改进和创新都在全球共享,没有许可费
1“在一个键AI.I.指标,中国领先于美国:人才”,《纽约时报》,访问,2024年5月25日,https://www.nytimes.com/2024/03/03/22/technology/china-ai-ai-talent.htalent.html。2艾伦,托马斯。“人工智能和国家安全”。哈佛肯尼迪学校贝尔弗科学与国际事务中心,2020年4月。3 Kania,Elsa B. “战场奇点:人工智能,军事革命和中国未来的军事力量。” 新美国安全中心,2019年11月。 4中国国务院。 “新一代人工智能发展计划”。 2017年7月20日。3 Kania,Elsa B.“战场奇点:人工智能,军事革命和中国未来的军事力量。”新美国安全中心,2019年11月。4中国国务院。 “新一代人工智能发展计划”。 2017年7月20日。4中国国务院。“新一代人工智能发展计划”。2017年7月20日。
通过使用计算机视觉,AI解释了复杂的医学成像,为我们对生理条件的理解增加了一层深度。 自然语言理解(NLU)将这种能力扩展到文本数据,通过临床注释进行解析,并报告了提取相关健康信息的结果,将其无缝整合到更广泛的健康状况中。 图形神经网络(GNNS)通过对不同的健康决定因素之间的复杂关系进行建模,从而提供了一个动态框架,从而反映了健康因素的现实世界相互联系,从而进一步丰富了该数据综合。通过使用计算机视觉,AI解释了复杂的医学成像,为我们对生理条件的理解增加了一层深度。自然语言理解(NLU)将这种能力扩展到文本数据,通过临床注释进行解析,并报告了提取相关健康信息的结果,将其无缝整合到更广泛的健康状况中。图形神经网络(GNNS)通过对不同的健康决定因素之间的复杂关系进行建模,从而提供了一个动态框架,从而反映了健康因素的现实世界相互联系,从而进一步丰富了该数据综合。
糖基化在包括糖尿病在内的蛋白质功能和疾病进展中起着至关重要的作用。这项研究进行了全面的糖蛋白分析,比较了健康的志愿者(HV)和DM样品,并鉴定出19,374肽和2,113种蛋白质,其中11104种是糖基化的。总共将287种不同的聚糖映射到3,722个糖基化的肽,揭示了HV和DM样品之间糖基化模式的显着差异。统计分析确定了29个显着改变糖基化位点,在DM中上调了23个,在DM中下调了6个。值得注意的是,在DM中,在Prosaposin的位置215处的Glycan HexNAC(2)Hex(2)FUC(1)在DM中显着上调,标志着其首次报道的与糖尿病的关联。机器学习模型,尤其是支持向量机(SVM)和广义线性模型(GLM),在基于糖基化特征(Glycans,糖基化蛋白质和糖基化位点)区分HV和DM样品时,可以在区分HV和DM样品时获得高分类精度(〜92%:96%)。这些发现表明,改变的糖基化模式可能是糖尿病相关病理生理和治疗靶向的潜在生物标志物。
3D人姿势估计(3D HPE)任务使用2D图像或视频来预测3D空间中的人类关节坐标。尽管最新的基于深度学习的方法取得了进步,但它们主要忽略了可访问的文本和自然可行的人类知识的能力,而错过了有价值的隐性监督,以指导3D HPE任务。此外,以前的努力经常从整个人体的角度研究这项任务,从而忽略了隐藏在不同身体部位的细粒度指导。为此,我们基于3D HPE的扩散模型(名为FinePose)提出了一个新的细粒及时驱动的DeNoiser。它由三个核心块组成,增强了扩散模型的反向过程:(1)通过耦合辅助辅助文本和可学习的提示以模拟隐式指南的耦合知识,并通过耦合的辅助辅助文本和自然可行的零件知识,可以通过耦合的辅助辅助文本和自然可行的零件知识来构建精细的部分零件感知的提示。(2)Fine-
体细胞DNA拷贝数变化(CNV)在癌症中很普遍,并且可以驱动癌症进展,尽管在改变细胞信号状态下通常具有未表征的作用。在这里,我们整合了5,598个肿瘤样品的基因组和蛋白质组学数据,以鉴定导致异常信号转导的CNV。由此产生的关联概括了已知的激酶 - 基底关系,并进一步的网络分析优先考虑可能因果基因。在癌细胞系中复制了43%,包括在多种肿瘤类型中鉴定出的44种强大的基因磷材料。实验验证了几个预测的河马信号调节剂。使用RNAi,CRISPR和药物筛选数据,我们发现癌细胞系中激酶成瘾的证据,确定靶向激酶依赖性细胞系的抑制剂。我们建议基因的拷贝数状态,作为激酶抑制差异影响的有用预测指标,这是一种抗癌疗法的策略。
