文本驱动的3D场景生成技术近年来取得了迅速的进步。他们的成功主要是为了使用现有的生成模型进行迭代执行图像翘曲和介入以生成3D场景。但是,这些方法在很大程度上依赖于现有模型的外部,从而导致几何和外观中的错误积累,从而阻止模型在各种情况下使用(例如,户外和虚幻的SCE-Narios)。为了解决此限制,我们通常通过查询和聚集全局3D信息来完善新生成的本地视图,然后逐步生成3D场景。具体而言,我们采用基于三平面特征的NERF作为3D场景的统一表示,以限制全局3D的一致性,并提出一个生成的改进网络,通过从2D差异模型以及当前场景的全球3D信息中利用自然图像来综合具有更高质量的新内容。我们的广泛实验表明,与以前的方法相比,我们的方法支持各种各样的场景产生和任意相机传播,并具有提高的视觉质量和3D一致性。
教育平台越来越多地由人工智能驱动。除了提供广泛的课程过滤选项外,个性化的学习材料和教师推荐也在推动当今的研究。虽然准确性在评估这些推荐中起着重要作用,但必须考虑许多因素,包括学习者的保留率、吞吐量、技能提升能力、学习机会的公平性和满意度。这在以学习者为中心和以平台为中心的方法之间造成了紧张关系。我将描述数据驱动推荐和教育理论交叉领域的研究。这包括利用同伴学习中的协作和亲和力的多目标算法、研究学习策略对平台和人员的影响以及自动生成课程序列。本文最后讨论了数据管理系统在实现现代在线教育方面可以发挥的核心作用。
1.社交媒体策略 2.社交媒体内容营销 3.社交媒体的包容性和可访问性 4.建立社交媒体社区 5.衡量成功社交营销认证考试价值 199 美元
关于艺术家 Christopher Kulendran Thomas 是一位现居伦敦和柏林的泰米尔裔艺术家,他的家人离开了位于斯里兰卡北部泰米尔人聚居地伊拉姆,那里的种族压迫和内乱不断升级,之后他在伦敦度过了成长的岁月。他大多是从远处观察斯里兰卡当代艺术如何从岛上冲突的灰烬中蓬勃发展起来,于是开始研究艺术创造现实的结构过程。如今,这位艺术家的工作室涉及众多学科,经常使用先进技术,是一种流畅的合作,将技术专家、建筑师、作家、记者、设计师、音乐家、活动家和艺术家聚集在一起,探索文化、技术和公民身份交叉点上各种尚未实现的可能性。Kulendran Thomas 是 New Eelam 的创始人兼首席执行官。
• 请勿在设备通电的情况下组装控制模块。请勿在设备通电的情况下安装。请勿将设备暴露在潮湿环境中。• • • 请勿在关闭驱动器电源后 1 分钟内更换控制模块,以免烧坏。
体细胞DNA拷贝数变化(CNV)在癌症中很普遍,并且可以驱动癌症进展,尽管在改变细胞信号状态下通常具有未表征的作用。在这里,我们整合了5,598个肿瘤样品的基因组和蛋白质组学数据,以鉴定导致异常信号转导的CNV。由此产生的关联概括了已知的激酶 - 基底关系,并进一步的网络分析优先考虑可能因果基因。在癌细胞系中复制了43%,包括在多种肿瘤类型中鉴定出的44种强大的基因磷材料。实验验证了几个预测的河马信号调节剂。使用RNAi,CRISPR和药物筛选数据,我们发现癌细胞系中激酶成瘾的证据,确定靶向激酶依赖性细胞系的抑制剂。我们建议基因的拷贝数状态,作为激酶抑制差异影响的有用预测指标,这是一种抗癌疗法的策略。
近年来,深度学习和基于人工智能的分子信息学发展迅猛。AlphaFold 的成功引发了人们对将深度学习应用于多个子领域的兴趣,包括合成化学的数字化转型、从科学文献中提取化学信息以及基于天然产物的药物发现中的人工智能。人工智能在分子信息学中的应用仍然受到这样一个事实的限制:用于训练和测试深度学习模型的大多数数据都不是 FAIR 和开放数据。随着开放科学实践越来越受欢迎,FAIR 数据运动、开放数据和开源软件等举措应运而生。对于分子信息学领域的研究人员来说,拥抱开放科学并提交支持其研究的数据和软件变得越来越重要。随着开源深度学习框架和云计算平台的出现,学术研究人员现在能够轻松部署和测试自己的深度学习算法。随着深度学习的新硬件和更快硬件的发展,以及数字研究数据管理基础设施的不断增加,以及促进开放数据、开源和开放科学的文化,人工智能驱动的分子信息学将继续发展。本综述探讨了分子信息学中开放数据和开放算法的现状,以及未来可以改进的方法。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
