4 md.devendran@gmail.com摘要:慢性肾脏病(CKD)是一个重大的全球健康问题,通常导致肾脏衰竭,需要昂贵的医疗治疗,例如透析或移植。早期检测CKD对于及时干预和改善患者预后至关重要。 该项目旨在开发基于机器学习的预测模型,以便在早期诊断CKD。 通过利用一系列临床特征,例如年龄,血压,血糖和其他相关的生物标志物,我们采用机器学习算法,包括决策树,随机森林和支持向量机(SVM),以预测患者开发CKD的患者的可能性。 本研究中使用的数据集包括具有各种肾脏状况的患者的病历,并应用了诸如归一化和缺失数据处理的预处理技术以确保模型的鲁棒性。 使用诸如准确性,精度,召回和F1得分等指标评估模型的性能,以确保可靠的预测。 这种方法不仅旨在提高诊断准确性,而且还提供了一个数据驱动的解决方案,以帮助医疗保健专业人员做出明智的决策。 该项目的结果可以有助于更好地管理CKD,最终有助于减轻医疗保健系统的负担并改善患者护理。早期检测CKD对于及时干预和改善患者预后至关重要。该项目旨在开发基于机器学习的预测模型,以便在早期诊断CKD。通过利用一系列临床特征,例如年龄,血压,血糖和其他相关的生物标志物,我们采用机器学习算法,包括决策树,随机森林和支持向量机(SVM),以预测患者开发CKD的患者的可能性。本研究中使用的数据集包括具有各种肾脏状况的患者的病历,并应用了诸如归一化和缺失数据处理的预处理技术以确保模型的鲁棒性。使用诸如准确性,精度,召回和F1得分等指标评估模型的性能,以确保可靠的预测。这种方法不仅旨在提高诊断准确性,而且还提供了一个数据驱动的解决方案,以帮助医疗保健专业人员做出明智的决策。该项目的结果可以有助于更好地管理CKD,最终有助于减轻医疗保健系统的负担并改善患者护理。
3D人姿势估计(3D HPE)任务使用2D图像或视频来预测3D空间中的人类关节坐标。尽管最新的基于深度学习的方法取得了进步,但它们主要忽略了可访问的文本和自然可行的人类知识的能力,而错过了有价值的隐性监督,以指导3D HPE任务。此外,以前的努力经常从整个人体的角度研究这项任务,从而忽略了隐藏在不同身体部位的细粒度指导。为此,我们基于3D HPE的扩散模型(名为FinePose)提出了一个新的细粒及时驱动的DeNoiser。它由三个核心块组成,增强了扩散模型的反向过程:(1)通过耦合辅助辅助文本和可学习的提示以模拟隐式指南的耦合知识,并通过耦合的辅助辅助文本和自然可行的零件知识,可以通过耦合的辅助辅助文本和自然可行的零件知识来构建精细的部分零件感知的提示。(2)Fine-
网络钓鱼攻击涉及通过伪装成一个值得信赖的实体来获取敏感信息的欺诈尝试,已经变得越来越复杂和普遍。传统的网络钓鱼检测方法通常依赖于启发式或基于签名的技术,这可能很难与不断发展的网络钓鱼策略保持同步。本文探讨了人工智能(AI)在增强网络钓鱼检测系统中的应用。AI驱动的方法利用机器学习算法,自然语言处理和模式识别,以更高的准确性和效率来识别和减轻网络钓鱼威胁。通过分析大量数据,这些系统可以检测出可能避免常规方法的网络钓鱼尝试的微妙模式和异常。该摘要讨论了网络钓鱼检测中采用的各种AI方法,包括受监督和无监督的学习技术,集合方法和深度学习模型。此外,它研究了AI-wive系统在现实世界中的有效性及其适应新兴的网络钓鱼策略的潜力。本文以目前的挑战和该领域的研究的未来方向进行了概述,强调需要持续发展以解决网络钓鱼威胁的动态性质。
越来越多的公共数据集显示出对自动器官细分和图检测的显着影响。但是,由于每个数据集的大小和部分标记的问题,以及对各种肿瘤的有限侵入,因此所得的模型通常仅限于细分特定的器官/肿瘤,以及ig- ignore ignore ignore的解剖结构的语义,也可以将其扩展到新颖的Domains。为了解决这些问题,我们提出了剪辑驱动的通用模型,该模型结合了从对比的语言图像预训练(剪辑)到细分模型中学到的文本嵌入。这个基于夹子的标签编码捕获了解剖学关系,使模型能够学习结构化特征嵌入和段25个器官和6种类型的肿瘤。提出的模型是从14个数据集的组装中开发的,使用总共3,410张CT扫描进行培训,然后对3个附加数据集进行了6,162个外部CT扫描进行评估。我们首先在医疗细分十项全能(MSD)公共排行榜上排名第一,并在颅库(BTCV)之外实现最先进的结果。此外,与数据集特异性模型相比,大学模型在计算上更有效(更快6英制),从不同站点进行CT扫描更好,并且在新任务上表现出更强的传输学习绩效。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
甘蔗是世界上最重要的糖和能源作物。在甘蔗育种期间,技术是需求,方法是手段。我们知道,种子是甘蔗产业发展的基石。Over the past century, with the advancement of technology and the expansion of methods, sugarcane breeding has continued to improve, and sugarcane production has realized a leaping growth, providing a large amount of essential sugar and clean energy for the long-term mankind development, especially in the face of the future threats of world population explosion, reduction of available arable land, and various biotic and abiotic stresses.Moreover, due to narrow genetic foundation, serious varietal degradation, lack of breakthrough varieties, as well as long breeding cycle and low probability of gene polymerization, it is particularly important to realize the leapfrog development of sugarcane breeding by seizing the opportunity for the emerging Breeding 4.0, and making full use of modern biotechnology including but not limited to whole genome selection, transgene, gene editing, and synthetic生物学,结合遥感和深度学习等信息技术。鉴于此,我们从技术和方法的角度专注于甘蔗育种,回顾了主要历史,指出了当前的状态和挑战,并为智能育种前景提供了合理的前景。
Artem Shmatko 1,3,*,Patel 1:4,5,6,*,Ramin Rahmanzade 4.5,红色4.5,Luke Friedrich Schrimmpf 4.5.7,Big 4.5,Henri Bogumil 4.5,Sybren L.N.5月8日,马丁·西尔·詹妮克(Martin Sill Jannik)11,13,大卫·鲁斯(David Reuss),克里斯蒂安·埃罗德·孟德(Christian Herold-Mende)9,技能M琼斯6:14,Stefan M. Pfister,Arnault Esparia-Sack 31,32,Pascal Varlet 31,32,Brandner 33,Xiangzhi Bai 2,Andreas von Deimling 4.5,
