糖基化在包括糖尿病在内的蛋白质功能和疾病进展中起着至关重要的作用。这项研究进行了全面的糖蛋白分析,比较了健康的志愿者(HV)和DM样品,并鉴定出19,374肽和2,113种蛋白质,其中11104种是糖基化的。总共将287种不同的聚糖映射到3,722个糖基化的肽,揭示了HV和DM样品之间糖基化模式的显着差异。统计分析确定了29个显着改变糖基化位点,在DM中上调了23个,在DM中下调了6个。值得注意的是,在DM中,在Prosaposin的位置215处的Glycan HexNAC(2)Hex(2)FUC(1)在DM中显着上调,标志着其首次报道的与糖尿病的关联。机器学习模型,尤其是支持向量机(SVM)和广义线性模型(GLM),在基于糖基化特征(Glycans,糖基化蛋白质和糖基化位点)区分HV和DM样品时,可以在区分HV和DM样品时获得高分类精度(〜92%:96%)。这些发现表明,改变的糖基化模式可能是糖尿病相关病理生理和治疗靶向的潜在生物标志物。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
近年来,深度学习和基于人工智能的分子信息学发展迅猛。AlphaFold 的成功引发了人们对将深度学习应用于多个子领域的兴趣,包括合成化学的数字化转型、从科学文献中提取化学信息以及基于天然产物的药物发现中的人工智能。人工智能在分子信息学中的应用仍然受到这样一个事实的限制:用于训练和测试深度学习模型的大多数数据都不是 FAIR 和开放数据。随着开放科学实践越来越受欢迎,FAIR 数据运动、开放数据和开源软件等举措应运而生。对于分子信息学领域的研究人员来说,拥抱开放科学并提交支持其研究的数据和软件变得越来越重要。随着开源深度学习框架和云计算平台的出现,学术研究人员现在能够轻松部署和测试自己的深度学习算法。随着深度学习的新硬件和更快硬件的发展,以及数字研究数据管理基础设施的不断增加,以及促进开放数据、开源和开放科学的文化,人工智能驱动的分子信息学将继续发展。本综述探讨了分子信息学中开放数据和开放算法的现状,以及未来可以改进的方法。
• 建立信任,让员工了解数据披露的重要性以及企业如何使用这些数据推动变革。 • 通过自我身份识别收集受保护特征的数据 • 进行趋势分析并持续衡量内部设定的 KPI,以跟踪不同级别细分市场代表性下降的位置及其原因(招聘、晋升、离职率) • 使用多个数据流和数据叠加来加深对员工的了解。
越来越多的公共数据集显示出对自动器官细分和图检测的显着影响。但是,由于每个数据集的大小和部分标记的问题,以及对各种肿瘤的有限侵入,因此所得的模型通常仅限于细分特定的器官/肿瘤,以及ig- ignore ignore ignore的解剖结构的语义,也可以将其扩展到新颖的Domains。为了解决这些问题,我们提出了剪辑驱动的通用模型,该模型结合了从对比的语言图像预训练(剪辑)到细分模型中学到的文本嵌入。这个基于夹子的标签编码捕获了解剖学关系,使模型能够学习结构化特征嵌入和段25个器官和6种类型的肿瘤。提出的模型是从14个数据集的组装中开发的,使用总共3,410张CT扫描进行培训,然后对3个附加数据集进行了6,162个外部CT扫描进行评估。我们首先在医疗细分十项全能(MSD)公共排行榜上排名第一,并在颅库(BTCV)之外实现最先进的结果。此外,与数据集特异性模型相比,大学模型在计算上更有效(更快6英制),从不同站点进行CT扫描更好,并且在新任务上表现出更强的传输学习绩效。
文本驱动的3D场景生成技术近年来取得了迅速的进步。他们的成功主要是为了使用现有的生成模型进行迭代执行图像翘曲和介入以生成3D场景。但是,这些方法在很大程度上依赖于现有模型的外部,从而导致几何和外观中的错误积累,从而阻止模型在各种情况下使用(例如,户外和虚幻的SCE-Narios)。为了解决此限制,我们通常通过查询和聚集全局3D信息来完善新生成的本地视图,然后逐步生成3D场景。具体而言,我们采用基于三平面特征的NERF作为3D场景的统一表示,以限制全局3D的一致性,并提出一个生成的改进网络,通过从2D差异模型以及当前场景的全球3D信息中利用自然图像来综合具有更高质量的新内容。我们的广泛实验表明,与以前的方法相比,我们的方法支持各种各样的场景产生和任意相机传播,并具有提高的视觉质量和3D一致性。
1。使用AI获得知情的患者同意:从患者那里获得知情同意是执行任何医疗程序之前最重要的一步。但是,根据《印度妇产科和妇科杂志》的报道,在获得同意书之前,只有25%的印度患者对手术进行了完整的简要介绍。此外,在印度的许多医院中,获得知情同意的过程被委派给了像护士这样的医院工作人员,而不是医生本人,以节省后者的时间。此外,许多患者无法理解起草同意书的语言,并且主要签署该表格仅为形式。简要地说,签署的同意书并不意味着已将信息传达给患者。AI来营救医生和患者。除了英语外,还可以用白话语言构建互动聊天机器人,这可以回答所有患者的问题并解决他对在他身上执行的程序的所有恐惧,这对于获得患者的知情同意可以走很长一段路。
1“在一个键AI.I.指标,中国领先于美国:人才”,《纽约时报》,访问,2024年5月25日,https://www.nytimes.com/2024/03/03/22/technology/china-ai-ai-talent.htalent.html。2艾伦,托马斯。“人工智能和国家安全”。哈佛肯尼迪学校贝尔弗科学与国际事务中心,2020年4月。3 Kania,Elsa B. “战场奇点:人工智能,军事革命和中国未来的军事力量。” 新美国安全中心,2019年11月。 4中国国务院。 “新一代人工智能发展计划”。 2017年7月20日。3 Kania,Elsa B.“战场奇点:人工智能,军事革命和中国未来的军事力量。”新美国安全中心,2019年11月。4中国国务院。 “新一代人工智能发展计划”。 2017年7月20日。4中国国务院。“新一代人工智能发展计划”。2017年7月20日。
