挪威气象研究所(MET NORWAY)在天气预报开发中心的机器学习(ML)科学家开设了永久性地位。成功的候选人将在建立,部署和应用世界领先的,基于ML的天气预报系统中发挥重要作用。这项工作是与欧洲中等天气预报(ECMWF)以及欧洲其他组织合作进行的。这项工作将涉及解决地球系统建模的机器学习中令人兴奋的研究问题,重点是北欧天气条件。优化大型ML模型和探索合奏方法将是开发和实施最佳模型配置以进行准确可靠的天气预测的关键。另一个主题是构建和扩展可用于培训的ML就绪数据集。结果将支持ML在天气科学和先锋数据驱动的预测模型中的快速发展及其在改善天气服务(例如YR)的天气预测价值链中的作用。
Artem Shmatko 1,3,*,Patel 1:4,5,6,*,Ramin Rahmanzade 4.5,红色4.5,Luke Friedrich Schrimmpf 4.5.7,Big 4.5,Henri Bogumil 4.5,Sybren L.N.5月8日,马丁·西尔·詹妮克(Martin Sill Jannik)11,13,大卫·鲁斯(David Reuss),克里斯蒂安·埃罗德·孟德(Christian Herold-Mende)9,技能M琼斯6:14,Stefan M. Pfister,Arnault Esparia-Sack 31,32,Pascal Varlet 31,32,Brandner 33,Xiangzhi Bai 2,Andreas von Deimling 4.5,
个性化和精确药物的长期目标是为具有疾病的患者准确预测给定治疗方案的结果。目前,由于患者群体中的潜在因素导致对感兴趣的药物的反应或对治疗相关的不良事件的反应不佳,因此许多临床试验无法满足其终点。事先确定这些因素并纠正它们可能会导致临床试验的成功增加。通过对健康和患病个体的OMICS进行综合和大规模的数据收集工作,导致了宿主,疾病和环境因素的宝藏,这有助于旨在治疗疾病的药物的有效性。随着OMICS数据的增加,人工智能允许对大数据进行深入分析,并为现实世界中的临床使用提供了广泛的应用,包括改善患者的选择和鉴定可行的伴侣疗法靶标,以改善更多患者的可转换性。作为用于复杂药物疾病 - 宿主相互作用的蓝图,我们在这里讨论了使用OMICS数据预测使用免疫检查点抑制剂(ICIS)预测癌症免疫疗法的反应和不良事件的挑战。基于OMICS的方法是改善患者结局的方法,因为在ICI病例中也已应用于广泛的复杂疾病环境中,体现了OMIC在深度疾病分析和临床使用中的使用。
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
1“在一个键AI.I.指标,中国领先于美国:人才”,《纽约时报》,访问,2024年5月25日,https://www.nytimes.com/2024/03/03/22/technology/china-ai-ai-talent.htalent.html。2艾伦,托马斯。“人工智能和国家安全”。哈佛肯尼迪学校贝尔弗科学与国际事务中心,2020年4月。3 Kania,Elsa B. “战场奇点:人工智能,军事革命和中国未来的军事力量。” 新美国安全中心,2019年11月。 4中国国务院。 “新一代人工智能发展计划”。 2017年7月20日。3 Kania,Elsa B.“战场奇点:人工智能,军事革命和中国未来的军事力量。”新美国安全中心,2019年11月。4中国国务院。 “新一代人工智能发展计划”。 2017年7月20日。4中国国务院。“新一代人工智能发展计划”。2017年7月20日。
通过使用计算机视觉,AI解释了复杂的医学成像,为我们对生理条件的理解增加了一层深度。 自然语言理解(NLU)将这种能力扩展到文本数据,通过临床注释进行解析,并报告了提取相关健康信息的结果,将其无缝整合到更广泛的健康状况中。 图形神经网络(GNNS)通过对不同的健康决定因素之间的复杂关系进行建模,从而提供了一个动态框架,从而反映了健康因素的现实世界相互联系,从而进一步丰富了该数据综合。通过使用计算机视觉,AI解释了复杂的医学成像,为我们对生理条件的理解增加了一层深度。自然语言理解(NLU)将这种能力扩展到文本数据,通过临床注释进行解析,并报告了提取相关健康信息的结果,将其无缝整合到更广泛的健康状况中。图形神经网络(GNNS)通过对不同的健康决定因素之间的复杂关系进行建模,从而提供了一个动态框架,从而反映了健康因素的现实世界相互联系,从而进一步丰富了该数据综合。
摘要我们提出了一种新的多模式面部图像生成方法,该方法将文本提示和视觉输入(例如语义掩码或涂鸦图)转换为照片真实的面部图像。为此,我们通过使用DM中的多模式特征在预训练的GAN的潜在空间中使用多模式特征来结合一般的对抗网络(GAN)和扩散模型(DMS)的优势。我们提供了一个简单的映射和一个样式调制网络,可将两个模型链接起来,并在特征地图和注意力图中将有意义的表示形式转换为潜在代码。使用gan inversion,估计的潜在代码可用于生成2D或3D感知的面部图像。我们进一步提出了一种多步训练策略,该策略将文本和结构代表反映到生成的图像中。我们提出的网络生成了现实的2D,多视图和风格化的面部图像,这些图像与输入很好。我们通过使用预训练的2D和3D GAN来验证我们的方法,我们的结果表现优于现有方法。我们的项目页面可在https://github.com/1211SH/diffusion-driven_gan-inversion/。
近年来,深度学习和基于人工智能的分子信息学发展迅猛。AlphaFold 的成功引发了人们对将深度学习应用于多个子领域的兴趣,包括合成化学的数字化转型、从科学文献中提取化学信息以及基于天然产物的药物发现中的人工智能。人工智能在分子信息学中的应用仍然受到这样一个事实的限制:用于训练和测试深度学习模型的大多数数据都不是 FAIR 和开放数据。随着开放科学实践越来越受欢迎,FAIR 数据运动、开放数据和开源软件等举措应运而生。对于分子信息学领域的研究人员来说,拥抱开放科学并提交支持其研究的数据和软件变得越来越重要。随着开源深度学习框架和云计算平台的出现,学术研究人员现在能够轻松部署和测试自己的深度学习算法。随着深度学习的新硬件和更快硬件的发展,以及数字研究数据管理基础设施的不断增加,以及促进开放数据、开源和开放科学的文化,人工智能驱动的分子信息学将继续发展。本综述探讨了分子信息学中开放数据和开放算法的现状,以及未来可以改进的方法。