Artem Shmatko 1,3,*,Patel 1:4,5,6,*,Ramin Rahmanzade 4.5,红色4.5,Luke Friedrich Schrimmpf 4.5.7,Big 4.5,Henri Bogumil 4.5,Sybren L.N.5月8日,马丁·西尔·詹妮克(Martin Sill Jannik)11,13,大卫·鲁斯(David Reuss),克里斯蒂安·埃罗德·孟德(Christian Herold-Mende)9,技能M琼斯6:14,Stefan M. Pfister,Arnault Esparia-Sack 31,32,Pascal Varlet 31,32,Brandner 33,Xiangzhi Bai 2,Andreas von Deimling 4.5,
或许可以理解为什么有些人对人工智能 (AI) 持怀疑态度。首先,媒体和研究报告经常说明机器将如何接管我们的工作,从而导致许多人目前担任的工作岗位被取代。其次,在许多情况下,AI 仍然是一个“黑匣子”。通常,在机器学习中,我们只能看到输入和输出,但不知道这些输入如何组合以达到结果。换句话说,机器以我们完全无法观察到的方式将输入转化为输出。将黑匣子算法应用于司法等公共生活的各个方面将产生深远的社会和道德影响。机器学习技术的发展正在全速前进。然而,监控和故障排除的方法却落后了。
摘要我们提出了一种新的多模式面部图像生成方法,该方法将文本提示和视觉输入(例如语义掩码或涂鸦图)转换为照片真实的面部图像。为此,我们通过使用DM中的多模式特征在预训练的GAN的潜在空间中使用多模式特征来结合一般的对抗网络(GAN)和扩散模型(DMS)的优势。我们提供了一个简单的映射和一个样式调制网络,可将两个模型链接起来,并在特征地图和注意力图中将有意义的表示形式转换为潜在代码。使用gan inversion,估计的潜在代码可用于生成2D或3D感知的面部图像。我们进一步提出了一种多步训练策略,该策略将文本和结构代表反映到生成的图像中。我们提出的网络生成了现实的2D,多视图和风格化的面部图像,这些图像与输入很好。我们通过使用预训练的2D和3D GAN来验证我们的方法,我们的结果表现优于现有方法。我们的项目页面可在https://github.com/1211SH/diffusion-driven_gan-inversion/。
1。使用AI获得知情的患者同意:从患者那里获得知情同意是执行任何医疗程序之前最重要的一步。但是,根据《印度妇产科和妇科杂志》的报道,在获得同意书之前,只有25%的印度患者对手术进行了完整的简要介绍。此外,在印度的许多医院中,获得知情同意的过程被委派给了像护士这样的医院工作人员,而不是医生本人,以节省后者的时间。此外,许多患者无法理解起草同意书的语言,并且主要签署该表格仅为形式。简要地说,签署的同意书并不意味着已将信息传达给患者。AI来营救医生和患者。除了英语外,还可以用白话语言构建互动聊天机器人,这可以回答所有患者的问题并解决他对在他身上执行的程序的所有恐惧,这对于获得患者的知情同意可以走很长一段路。
aabstr abtract Act ..在这项研究中,开发了一种数据驱动的深度学习模型,以快速准确预测温度演化和金属添加剂制造过程的熔融池尺寸。该研究的重点是通过直接能量沉积制造的M4高速钢材料粉末的批量实验。在非优化过程参数下,许多沉积层(以上30)通过由覆层材料对热史的高灵敏度引起的样品深度产生了巨大的微观结构变化。在先前的研究中通过实验测量验证的批量样本的2D有限元分析(FEA)能够实现定义在不同过程设置下温度场进化的数值数据。训练了馈送前向神经网络(FFNN)方法,以重现由FEA产生的温度场。因此,训练有素的FFNN用于预测初始数据集中未包含的新过程参数集的温度字段历史记录。除了输入能量,节点坐标和时间外,还认为五个相关的层数,激光位置以及从激光到采样点的距离可提高预测准确性。结果表明,FFNN可以很好地预测温度演化,在12秒内精度为99%。
无线驱动和远程控制的活跃软材料已引起了大量的研究注意,因为与传统的智能材料相比,它们在各种各样的领域中具有潜在的潜在应用,其性能有所改善。[1-5]这些合成伴侣对环境刺激的反应并表现出模仿或与自然界观察到的行为或现象相匹配的能力。[6-8]在这些智能材料中,机械刺激响应材料从环境输入中收获能量,例如光线,[9-11]热量,[12,13]溶剂,[14,15]和物理领域和[16-18],并将其转换为机械能量,无需通过机械形状,无需通过板上的功率来源。这些无线材料可以完成各种功能,例如运动[19-21]以及物体操纵和运输[22-24]作为执行器和传感器。在迄今为止报道的大量活跃智能材料中,由于它们的独特特征和独特的优点,液晶弹性体(LCE)和磁反应弹性体(MRE)最近与其他人脱颖而出。lces表现出大量的菌株(高达400%)和高度工作,以响应多种环境刺激,例如温度[25-27]光,[11,28]和电场。[17,18,29] LCES内部元素的预定对齐(由导演n描述)启用了已在软执行器和生物启发的设备中使用的复杂的3D可逆形状。这些局部菌株共同起作用,以实现指定的形状 - 修复行为,这通常是平面外弯曲的。[6,11,30]外部刺激会根据LCES的当地董事场诱导收缩和拉伸菌株的对齐中的订单参数。另一方面,MRE由柔软的弹性体(SE)矩阵组成,其嵌入式硬磁性微或纳米果(MMPS或MNP)组成。外部磁场在嵌入的MMP或MNP上产生局部力和扭矩。分离的扭矩会导致身体变形和MRE材料的净旋转,而颗粒所经历的力会融合到净力,从而置换MRE或变形。[31]磁性致动具有远距离,健壮和快速致动的优势,并且瞬间的能力
通过使用计算机视觉,AI解释了复杂的医学成像,为我们对生理条件的理解增加了一层深度。 自然语言理解(NLU)将这种能力扩展到文本数据,通过临床注释进行解析,并报告了提取相关健康信息的结果,将其无缝整合到更广泛的健康状况中。 图形神经网络(GNNS)通过对不同的健康决定因素之间的复杂关系进行建模,从而提供了一个动态框架,从而反映了健康因素的现实世界相互联系,从而进一步丰富了该数据综合。通过使用计算机视觉,AI解释了复杂的医学成像,为我们对生理条件的理解增加了一层深度。自然语言理解(NLU)将这种能力扩展到文本数据,通过临床注释进行解析,并报告了提取相关健康信息的结果,将其无缝整合到更广泛的健康状况中。图形神经网络(GNNS)通过对不同的健康决定因素之间的复杂关系进行建模,从而提供了一个动态框架,从而反映了健康因素的现实世界相互联系,从而进一步丰富了该数据综合。
文本驱动的3D场景生成技术近年来取得了迅速的进步。他们的成功主要是为了使用现有的生成模型进行迭代执行图像翘曲和介入以生成3D场景。但是,这些方法在很大程度上依赖于现有模型的外部,从而导致几何和外观中的错误积累,从而阻止模型在各种情况下使用(例如,户外和虚幻的SCE-Narios)。为了解决此限制,我们通常通过查询和聚集全局3D信息来完善新生成的本地视图,然后逐步生成3D场景。具体而言,我们采用基于三平面特征的NERF作为3D场景的统一表示,以限制全局3D的一致性,并提出一个生成的改进网络,通过从2D差异模型以及当前场景的全球3D信息中利用自然图像来综合具有更高质量的新内容。我们的广泛实验表明,与以前的方法相比,我们的方法支持各种各样的场景产生和任意相机传播,并具有提高的视觉质量和3D一致性。
T3 中的风险监控是一个持续的过程,可同时检查多个层面的风险。在投资组合层面,会不断计算和评估各个风险指标,以符合预定的阈值。系统层面的监控会跟踪所有协议参与者的总体风险指标,确保系统性风险保持在可接受的范围内。市场层面的监控为风险评估提供了背景信息,并有助于在潜在市场压力条件影响投资组合稳定性之前识别它们。