人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
无线驱动和远程控制的活跃软材料已引起了大量的研究注意,因为与传统的智能材料相比,它们在各种各样的领域中具有潜在的潜在应用,其性能有所改善。[1-5]这些合成伴侣对环境刺激的反应并表现出模仿或与自然界观察到的行为或现象相匹配的能力。[6-8]在这些智能材料中,机械刺激响应材料从环境输入中收获能量,例如光线,[9-11]热量,[12,13]溶剂,[14,15]和物理领域和[16-18],并将其转换为机械能量,无需通过机械形状,无需通过板上的功率来源。这些无线材料可以完成各种功能,例如运动[19-21]以及物体操纵和运输[22-24]作为执行器和传感器。在迄今为止报道的大量活跃智能材料中,由于它们的独特特征和独特的优点,液晶弹性体(LCE)和磁反应弹性体(MRE)最近与其他人脱颖而出。lces表现出大量的菌株(高达400%)和高度工作,以响应多种环境刺激,例如温度[25-27]光,[11,28]和电场。[17,18,29] LCES内部元素的预定对齐(由导演n描述)启用了已在软执行器和生物启发的设备中使用的复杂的3D可逆形状。这些局部菌株共同起作用,以实现指定的形状 - 修复行为,这通常是平面外弯曲的。[6,11,30]外部刺激会根据LCES的当地董事场诱导收缩和拉伸菌株的对齐中的订单参数。另一方面,MRE由柔软的弹性体(SE)矩阵组成,其嵌入式硬磁性微或纳米果(MMPS或MNP)组成。外部磁场在嵌入的MMP或MNP上产生局部力和扭矩。分离的扭矩会导致身体变形和MRE材料的净旋转,而颗粒所经历的力会融合到净力,从而置换MRE或变形。[31]磁性致动具有远距离,健壮和快速致动的优势,并且瞬间的能力
糖基化在包括糖尿病在内的蛋白质功能和疾病进展中起着至关重要的作用。这项研究进行了全面的糖蛋白分析,比较了健康的志愿者(HV)和DM样品,并鉴定出19,374肽和2,113种蛋白质,其中11104种是糖基化的。总共将287种不同的聚糖映射到3,722个糖基化的肽,揭示了HV和DM样品之间糖基化模式的显着差异。统计分析确定了29个显着改变糖基化位点,在DM中上调了23个,在DM中下调了6个。值得注意的是,在DM中,在Prosaposin的位置215处的Glycan HexNAC(2)Hex(2)FUC(1)在DM中显着上调,标志着其首次报道的与糖尿病的关联。机器学习模型,尤其是支持向量机(SVM)和广义线性模型(GLM),在基于糖基化特征(Glycans,糖基化蛋白质和糖基化位点)区分HV和DM样品时,可以在区分HV和DM样品时获得高分类精度(〜92%:96%)。这些发现表明,改变的糖基化模式可能是糖尿病相关病理生理和治疗靶向的潜在生物标志物。
或许可以理解为什么有些人对人工智能 (AI) 持怀疑态度。首先,媒体和研究报告经常说明机器将如何接管我们的工作,从而导致许多人目前担任的工作岗位被取代。其次,在许多情况下,AI 仍然是一个“黑匣子”。通常,在机器学习中,我们只能看到输入和输出,但不知道这些输入如何组合以达到结果。换句话说,机器以我们完全无法观察到的方式将输入转化为输出。将黑匣子算法应用于司法等公共生活的各个方面将产生深远的社会和道德影响。机器学习技术的发展正在全速前进。然而,监控和故障排除的方法却落后了。
7月 *的Irina *,‡,,赫尔曼(Herman),丹尼尔·卡森伯(DanielKasenber§ Wei-Jen KO 3,Andrera Huber 1,Bretht Wastshire 1,Gall Elidan,Rabin 2,Roni Robinin 2,Robiviit Engelberg 2,Lydan Hackmon 2,Ravil 2,Rachel棕色1,绿色Chiir§,1,Grand Studina Grand We-Xin Dog 3,Marchal 1,Racsite Van Deman 4,儿童区,Abbhipolo 3,Striopolous 3,Annihe Hale 5,Wais Matatas 2,Ben Gomes 3特征1
3D人姿势估计(3D HPE)任务使用2D图像或视频来预测3D空间中的人类关节坐标。尽管最新的基于深度学习的方法取得了进步,但它们主要忽略了可访问的文本和自然可行的人类知识的能力,而错过了有价值的隐性监督,以指导3D HPE任务。此外,以前的努力经常从整个人体的角度研究这项任务,从而忽略了隐藏在不同身体部位的细粒度指导。为此,我们基于3D HPE的扩散模型(名为FinePose)提出了一个新的细粒及时驱动的DeNoiser。它由三个核心块组成,增强了扩散模型的反向过程:(1)通过耦合辅助辅助文本和可学习的提示以模拟隐式指南的耦合知识,并通过耦合的辅助辅助文本和自然可行的零件知识,可以通过耦合的辅助辅助文本和自然可行的零件知识来构建精细的部分零件感知的提示。(2)Fine-
摘要:当前的欧洲(EU)政策,即绿色交易,设想化学药品的安全可持续实践,包括纳米型(NFS),在创新的最早阶段。根据设计(SSBD)框架在理论上安全且可持续的框架是从欧盟的协作努力确定的,用于定义每个SSBD维度的定量标准,即人类和环境安全维度以及环境,社会,社会和经济可持续性维度。在这项研究中,我们针对安全维度,并展示了从可发现,可访问,可互操作和可重复使用的数据得出的定量内在危害标准的旅程。数据策划并合并为开发新方法方法,即基于回归和分类机器学习算法的定量结构 - 活性关系模型,目的是预测危害类别。模型利用系统(即流体动力大小和多分散性指数)和非系统(即元素组成和核心大小) - 依赖性纳米级特征与生物学内部属性和实验性条件结合使用,用于各种银NFS,功能性抗药性抗药性纺织品和宇宙型的实验条件。在第二步中,通过利用专家推理制定的贝叶斯网络结构来获得可解释的规则(标准),然后是确定性因素。概率模型的预测能力为≈78%(所有危险类别的平均准确性)。在这项工作中,我们展示了如何从SSBD框架的概念化转变为使用务实实例的现实实现。这项研究揭示了(i)在合成阶段的安全方面考虑的定量内在危害标准,(ii)(ii)内部的挑战,以及(iii)生成和蒸馏此类标准的未来方向,这些方向可以喂养SSBD范式。具体而言,标准可以指导材料工程师合成固有的纳米形式固有更安全的NF,而在创新的最早阶段,这些NFS可以在先前合成和假设的尚未合成的nfs nfs nfs的硅化毒性筛选中快速且具有成本效率。关键字:设计,纳米型,纳米颗粒,定量结构 - 活动关系,机器学习,贝叶斯规则,内在危险标准
摘要:当前的欧洲(EU)政策,即绿色交易,设想化学药品的安全可持续实践,包括纳米型(NFS),在创新的最早阶段。根据设计(SSBD)框架在理论上安全且可持续的框架是从欧盟的协作努力确定的,用于定义每个SSBD维度的定量标准,即人类和环境安全维度以及环境,社会,社会和经济可持续性维度。在这项研究中,我们针对安全维度,并展示了从可发现,可访问,可互操作和可重复使用的数据得出的定量内在危害标准的旅程。数据策划并合并为开发新方法方法,即基于回归和分类机器学习算法的定量结构 - 活性关系模型,目的是预测危害类别。模型利用系统(即流体动力大小和多分散性指数)和非系统(即元素组成和核心大小) - 依赖性纳米级特征与生物学内部属性和实验性条件结合使用,用于各种银NFS,功能性抗药性抗药性纺织品和宇宙型的实验条件。在第二步中,通过利用专家推理制定的贝叶斯网络结构来获得可解释的规则(标准),然后是确定性因素。概率模型的预测能力为≈78%(所有危险类别的平均准确性)。在这项工作中,我们展示了如何从SSBD框架的概念化转变为使用务实实例的现实实现。这项研究揭示了(i)在合成阶段的安全方面考虑的定量内在危害标准,(ii)(ii)内部的挑战,以及(iii)生成和蒸馏此类标准的未来方向,这些方向可以喂养SSBD范式。具体而言,标准可以指导材料工程师合成固有的纳米形式固有更安全的NF,而在创新的最早阶段,这些NFS可以在先前合成和假设的尚未合成的nfs nfs nfs的硅化毒性筛选中快速且具有成本效率。关键字:设计,纳米型,纳米颗粒,定量结构 - 活动关系,机器学习,贝叶斯规则,内在危险标准