认知症状在感染后长达2年中通常描述了超出Covid-19感染的急性阶段的认知症状。认知性能之间的关系,特别是在感染后长期观察到的情节记忆过程,而在Covid-19的急性阶段中的细胞因子水平尚未在人类中鉴定出来。确定在SARS-COV-2感染的急性阶段分泌的细胞因子IL1β,IL-6和TNFα的水平是否相关,并预测感情后6至9个月和12到15个月的人类的口头和视觉空间情节记忆表现。从急性期(IL-1β,IL-6,TNFα,TNFα)中测量的细胞因子浓度的关联和预测价分析。为此,我们使用了Spearman相关性和广义线性混合模型。IL-1β水平与感染后6-9个月的言语记忆总回忆评分有关。感染后12-15个月IL-6预测言语记忆评分。这项研究表明,SARS-COV-2感染急性阶段炎症反应的严重程度预测了长期感染后的言语发作记忆表现。
环形石墨烯(TG)代表了一类新的碳纳米结构,将曲率驱动的场限制与量子增强电荷相干性集成在一起。与常规的基于碳的增强剂不同,TG表现出源自无折叠的实验和理论证据链的3×10 9的电磁场扩增因子(AF)。曲率诱导的定位和等离子体杂交理论(PHT)的协同作用使van der waals(VDW)在青铜基质中的膨胀从0.4 nm到577 nm,从而使超高的TG浓度仅为0.005 wt%,以驱动机械性能的转化增强。将其纳入无铅铜制时,TG将耐磨性提高458%,并使CO₂排放量减少78.2%,从而提供了史无前例的性能和可持续性组合。这些作用源于量子等离子体加固机制,这些机制改善了纳米级的应力转移,负载分布和分子内聚力。与常规合金元素(例如PB或Ni)不同,依赖于散装物质特性的PB或Ni,TG从根本上改变了通过纳米级力重新分布来改变耐药性。这项研究将TG确立为下一代金属纳米复合材料的破坏性材料,将基本纳米科学与与行业相关的摩擦学验证合并。与全球第八大卡车制造商Scania合作进行,该验证证实了其直接的工业相关性,证明了现实世界中的适用性在高性能耐磨应用中。连接电磁场放大,VDW扩展和摩擦学验证的明确证据链支持TG的量子工程增强功能,将其定位为高级制造和重型产业的基石。
利用生成文本来对AI模型进行图像探索审美整形外科的种族,性别和年龄,尚不清楚各种患者人群的代表性和包括图像AI模型的代表性和包含。因此,该项目探讨了AI模型产生的图像中种族,性别和年龄的多样性:DALL-E3,Midjourney和Adobe Firefly,以响应着针对流行美学程序的提示:致命的美学方法:脂肪,脂肪成形术和隆鼻。提示旨在要求每种AI模型为每个性别,种族和年龄组合生成手术结果的图像,以及用于吸脂术,骨整形术和隆鼻术的图像:男性与女性,白人或白人,黑人或非裔美国人或非裔美国人,拉丁裔或拉丁裔或西班牙裔或年龄组:20-30岁:20-30岁:20-30岁,31-45岁以上。通过Fitzpatrick和Monk量表评估了每个生成的图像以表示肤色,并使用4项问卷进行性别率。KRUSKAL-WALIS检验用于对成对比较的3个模型(P <0.05)和Wilcoxon Rank Sum测试之间的连续变量进行整体比较(P <0.017,基于Bonferroni方法进行调整后,用于多个比较)。Fischer的East检验用于对3个模型(P <0.05)和成对比较(P <0.017)之间的分类变量进行整体比较。浅色肤色(fitzpatrick i-iii&Monk 1-5)之间没有显着差异与深色肤色(Fitzpatrick IV-VI和Monk 6-10)与图像生成型模型(p = 0.26&p = 0.31)之间。通常在所有3种AI模型(P <0.0001)以及对衰老的描绘时(P = 0.0009)进行了显着差异。似乎具有包容性和浅色肤色和深色肤色的公平代表,但是关于性别偏见的描绘仍然有改善的余地。
Balaji现代管理学院助理教授,Sri Balaji University,Pune,India,印度1摘要本研究探讨了AI推荐引擎如何帮助使在线营销中的超个性化更容易,以及如何影响客户参与度,特别是在印度背景下。我们使用了研究方法和技术组织 - 环境(TOE)框架的混合,以查看来自印度475个响应的数据,包括消费者,营销人员和AI专业人员。过度个性化随着人类的推荐系统而大大增加(r 2 = 0.62,p <0.001)。这会导致消费者指标大大增加,例如点击率(CTR:r = 0.72,p <0.01),转换率(r = 0.68,p <0.01)和客户忠诚度(r = 0.75,p <0.01)。然而,它的大规模使用受到技术,组织和道德原因的约束,最适用的约束是道德问题(平均= 4.5)。定性结果表明,道德和良好的AI实践对于减少消费者对数据隐私和算法公平性的担忧(β= 0.45,p <0.001)的重要性是多么重要。研究得出的结论是,尽管超个性化具有改变数字营销的革命性潜力,但其成功是以克服道德问题的成本,提供透明度,并负责任地利用AI技术。这项研究增加了AI和数字营销的学术工作,并为公司提供了可行的建议,以最大程度地提高消费者的互动。早期的数字营销依靠质量,毛毯通信,这些通讯交付给大型市场(Korongo,Ikoha和Nambiro)。关键字超个性化,AI驱动的推荐引擎,消费者参与,道德AI,数字营销,脚趾框架2引言2.1数字营销的演变以及向个性化的变化数字营销历史一直是创新和发明的历史之一,由技术和不断变化的消费者行为驱动。即使这样的计划,在他们试图淹没人口的尝试中,他们的奇异交付失败了,由于消费者的股息降低了,但股息下降了
1 ERP的信噪比低,并且受到清醒婴儿研究中对(例如,肌肉)伪影的敏感性的约束。ERP还使用事后减法在对瞬态刺激的绝对脑反应之间,使得面部选择性神经活动是间接地获得的,并且可以在减去的反应中被大噪声掩盖,或者由刺激的子集驱动。此外,ERP成分的时源通常很难从个人和年龄段的形状,潜伏期和极性方面的脑反应中客观地定义。最后,ERP研究通常使用有限的同质和编辑的刺激(即,从自然背景分割,与类别示例的相同暴露条件进行分割;请参见脚注2),并将面孔与几个非面类别进行比较。
Bio Raj N. Singh博士是摄政教授兼国家工程学院(NAE)的成员。他曾担任材料科学与工程学院的创始局长,威廉姆斯公司杰出主席教授,俄克拉荷马州立大学(OSU)的能源技术主任。他收到了SC.D.马萨诸塞州材料科学与工程技术学院的学位。他在2012年加入OSU之前曾在Argonne国家实验室,GE-R&D中心和辛辛那提大学工作。Dr. Singh has been recognized for his engineering leadership through his scholarly activities (260 journal articles, 95 referred proceeding/reports, and 282 oral/invited presentations), pioneering inventions of MI composite processing technology leading to commercialization (28 granted patents), for graduating 36 students with MS and PhD degrees and through numerous professional awards in recognition of his engineering leadership such as Member of National Academy of Engineering (NAE), National美国陶瓷学会的Rishi Raj创新与商业化奖章,ASM国际Albert Sauveur成就奖,ASM International,Regents教授(OSU),AAAS AAAS,ASM International院士,美国陶瓷学会会员,美国陶瓷学院会员,惠特尼(UC)研究员(UC),惠特尼·盖里(Whitney Gee-cr),ASM国际院士,惠特尼·加里(Geie-Ge-Cr);专利奖GE-CR&D:青铜,银和金申请奖章。他还担任5个国际期刊的编辑委员会成员。
这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。通信:Matthias Kretzler,华纳 - 兰伯特/帕克戴维斯戴维斯教授,医学/肾脏科学和计算医学与生物信息学,密歇根大学,1560毫秒II,1150 W Medical Center DR-SPC5676,Ann Arbor,密歇根州Ann Arbor,密歇根州48109-5676,美国。kretzler@umich.edu。披露MK报告来自国立卫生研究院(NIH)的赠款;密歇根大学的非财务支持;通过密歇根大学的资金,来自Goldfinch Bio,Boehringer-Ingelheim,Certa,Travere和Maze Therapeutics的资金;以及通过密歇根大学(NIH)与NIH,Chan Zuckerberg计划,JDRF,Roche,Roche,Roche,Astrazeneca,Novo Nordisk,Moderna,Moderna,Chinook Innovication Medicine,Chinook,Angion Pharmaceuticals,Renalytixai,Eli Lilly Lilly,Regenern,Renderean,Jenansissen,Inioniss,Inioners和J.通过Astellas,Poxel,Janssen和Novo Nordisk的密歇根大学通过密歇根大学的咨询费用;并在NIH - 国际促进转化科学中心(NCATS)理事会和肾脏肾脏国际委员会任职。此外,MK和WJ还具有授权专利,PCT/EP2014/073413“生物标志物和用于进展预测的慢性肾脏病”。 HT报告肾脏策略有限责任公司的就业。他与Aclipse,Angion,Goldfinch Bio,Maze Therapeutics,Natera(Renasight),Otsuka(数据安全监测委员会[DSMB]儿科试验主席),Travere Therapeutics,Inc,Boehringer-ingelheim,eppepv和phasev和eppepv and phasev和walder;以及参加由Astellas和Reata组织的肾小球疾病板的荣誉症。他是DUPRO的指导委员会和科学顾问委员会(Duplex [Sparsentan研究,对主要局灶性节段性肾小球硬化症患者的研究{FSGS}],并保护[Sparsentan对IGA Nephropathy试验患者治疗的Sparsentan对治疗的影响和安全性的研究)他是肾脏健康计划董事会成员;儿科肾病,肾小球疾病和肾脏360的编辑委员会成员;并担任Nephcure肾脏国际的合作伙伴,致力于促进小儿参与肾小球疾病(Pioneer)的临床试验。LB报告了NIH,国家糖尿病与消化研究所和肾脏疾病(NIDDK)和国家癌症研究所(NCI)的当前工作之外的赠款;来自Elsevier-DP4Kidney的特许权使用费/许可;来自Vertex,Protalix和Sangamo的咨询费;以及基于DL的多站点的多个二次分割的专利。 她还在国际肾小球疾病学会的指导和临床试验委员会中。 se报告与Novo Nordisk,Astrazeneca,Gilead Sciences Inc,Janssen Pharmaceuticals,Eli Lilly and Company,Travere Therapeutics,Certa,Boehringer Ingelheim,Angion,Angion,BioMedica,BioMedica,Regeneron,Roche和Chinook通过Michigan大学。 LBH报告了当前工作之外的NIH的资金。 WJ通过密歇根大学获得了欧洲委员会的资金; Travere Therapeutics的咨询费;国际肾脏病学会的旅行支持;并且是美国肾脏病学会的成员。 CG得到了NIDDK的资金来支持这项工作。LB报告了NIH,国家糖尿病与消化研究所和肾脏疾病(NIDDK)和国家癌症研究所(NCI)的当前工作之外的赠款;来自Elsevier-DP4Kidney的特许权使用费/许可;来自Vertex,Protalix和Sangamo的咨询费;以及基于DL的多站点的多个二次分割的专利。她还在国际肾小球疾病学会的指导和临床试验委员会中。se报告与Novo Nordisk,Astrazeneca,Gilead Sciences Inc,Janssen Pharmaceuticals,Eli Lilly and Company,Travere Therapeutics,Certa,Boehringer Ingelheim,Angion,Angion,BioMedica,BioMedica,Regeneron,Roche和Chinook通过Michigan大学。LBH报告了当前工作之外的NIH的资金。WJ通过密歇根大学获得了欧洲委员会的资金; Travere Therapeutics的咨询费;国际肾脏病学会的旅行支持;并且是美国肾脏病学会的成员。CG得到了NIDDK的资金来支持这项工作。DSG报告了NIH的过去研究资金,疾病控制与预防中心,美国食品和药物管理局,Travere Therapeutics,Reata,Novartis和Boehringer Ingelheim;从Roche/Genentech和Vertex支付给密歇根大学的过去咨询费;过去参加DSMB的NIH;是肾脏研究网络协调中心的前任主任; and being the unpaid project colead of the National Kidney Foundation improving vaccination in the kidney disease community project, the past colead of the Kidney Health Initiative Pediatric IgA nephropathy project, the past member of the Kidney Health Initiative FSGS outcomes project, and the past planning committee member for the NephCure- and Kidney Health Initiative–sponsored workshop entitled Pathways to SGLT2i for renoprotection在小儿CKD中。JRS报告了NCAT,NIDDK和Nephcure Hidney International的资金,以支持这项工作,NIDDK,Calliditas,Niaid/Immuna Tolerance Network,Chinook和Chinook和Vertex在这项研究中。他已从赛诺菲获得了特许权使用费或许可费; Boehringer Ingelheim的咨询费;美国发行的专利美国/11,645,753,“使用肾脏活检全幻灯片图像进行基于深度学习的多站点的多站点,多个肾脏病理学的分割”,《发明披露》“用于APOL1相关的肾脏疾病和前宾夕法尼亚的转基因小鼠模型”;和主持肾脏X肾脏创新加速器的指导委员会。WRU已获得NIH和Boehringer Ingelheim International Gmbh/certa Therapeutics/Travere Therapeutics Inc的资助,并获得了NIH U01研究的共同评估者和2次R01研究,与本文无关。她是美国人类遗传学会和遗传咨询杂志编辑委员会委员会成员。lhm报告了NIDDK和NCAT的赠款,以支持本文,以及Boehringer-Intelheim,Travere Therapeutics和Reliant Glycosciences的Boehringer-Intelheim赠款,与密歇根大学与本研究无关。她曾在Reata Pharmaceuticals,Calliditas Therapeutics和Travere Therapeutics的顾问委员会任职;并以ASN ACP,Travere,Calliditas和Chinook Therapeutics为顾问委员会成员或相关演讲的Honoraria。在这项工作之外,她期望获得Vertex的咨询费;并且是NIDDK-KUH(肾脏,泌尿科和血液疾病的部门)COVID试验DSMB成员和美国肾脏学会的理事会成员。所有其他作者都不宣布竞争利益。
精确操作是指机器人在综合环境中表现出高度准确,细致和灵活的任务的能力[17],[18]。该领域的研究重点是高精度控制和对动态条件的适应性。使用运动学模型和动态模型以实现结构化设置中的精确定位和组装[19],依靠刚性机械设计和模型驱动的控制依赖于刚性机械设计和模型驱动的控制。最近,深度学习和强化学习改善了动态环境中的机器人适应性[20],[21],而视觉和触觉感应的进步使千分尺级的精度在握把,操纵和组装方面[22]。此外,多机器人协作还允许更复杂和协调的精确任务。尽管取得了重大进展,但在多尺度操作整合,动态干扰补偿和低延迟相互作用中仍然存在挑战[23]。未来的研究应进一步改善交叉模态信息的实时对齐,并增强非结构化环境中机器人视觉的鲁棒性,以优化精确的操纵能力。