为了感知环境中的对象并互动,我们毫不费力地在所需的位置配置了我们的figertips。因此,可以合理地假设潜在的控制机制依赖于有关我们的手和纤维的结构和空间维度的准确知识。然而,这种直觉受到了多年的研究挑战,表明纤维几何学的感知中存在巨大的偏见。1–5这种感知偏见被视为证据表明大脑对人体的内部表示被扭曲,6导致了关于我们行为熟练的明显悖论。7在这里,我们对手工感知的偏见提出了另一种解释,这是噪音的贝叶斯整体的结果,但是关于纤维几何和姿势的无偏见,无偏的体感信号。为了解决这一假设,我们将贝叶斯反向工程与索引填充剂的关节和填充定位进行的行为实验相结合。,我们以感觉或在空间坐标中对贝叶斯的整合进行了建模,表明后一种模型变体导致了纤维感知的偏见,尽管有准确表示纤维长度。关节和纤维化定位响应的行为度量显示出相似的偏见,这些偏见是由空间基的,但不是基于感觉的模型变体所填充的。空间模型变体还优于具有内置几何偏差的失真手模型。总的来说,我们的结果表明,纤维几何形状的感知失真不会反映扭曲的手模型,而是源自几乎最佳的贝叶斯对体感信号的推断。
摘要 - 电子产品越来越容易受到硅内能量颗粒相互作用的影响。为了在辐射效应下提高电路可靠性,在VLSI系统的设计流中采用了几种硬化技术。本文提出了逻辑门中的PIN分配优化,以减少单个事件瞬态(SET)横截面并提高轨内软率。信号概率传播用于通过重新交换或引脚交换将最低概率分配给电路最敏感的输入组合。细胞优化的软率最高可降低48%。对于分析的算术基准电路,优化的细胞网列在设置的横截面和轨内软校正速率上可以在电路设计区域内无需成本降低8%至28%。另外,由于引脚交换是一种布局友好的技术,因此优化不会影响细胞放置,并且可以与逻辑和物理合成中的其他硬化技术一起采用。
可扩展,安全和适应AI,虚拟化和实时数据处理轴向AX300是一个高度可配置的边缘计算平台,旨在处理IT/OT环境中的复杂工作负载。其灵活的体系结构支持AI,机器学习,数据分析和虚拟化,使其非常适合工业自动化,智能城市和关键基础架构。具有高级安全功能,包括TPM和加密,可确保数据完整性和保护。轴向AX300提供远程管理功能,可从任何地方进行无缝部署,监视和更新。其可扩展设计支持大型语言模型推断和边缘的实时数据处理。为在恶劣环境中的可靠性中构建,轴向AX300提供了低延迟,有效的计算,桥接云和边缘智能为下一代AI驱动的决策和自主系统提供动力。
这种强大的深度学习模型受益于TSIA团队也开发的超快光学成像技术。“这项技术使我们能够以极高的速度捕获手机图像。每天都可以生成数千万的图像。因此,利用这一单个系统,我们处于许多AI创新中,我们处于一个独特的位置,以加速先进的AI R&D,从培训,优化到部署,”
随着全球抗击气候变化加剧的努力,微藻作为一种未充分利用但有希望的资源而脱颖而出。新的研究强调了微藻作为抵抗气候变化的解决方案的能力,但研究人员警告说,“智能微藻生物培训”需要释放其全部潜力。
I.简介数字图像处理是计算机科学中快速创建范围。对于研究工作而言,这是一个极其引人注目的领域,其各种技术被用作广泛应用的一部分,例如人类系统界面,医疗代表,图像UP等级,法律实施以及用于安全目的的数字水印。数字水印是数字图像处理的利用率。它在广泛的应用中很有用。Tirkel在1993年首先使用数字水印技术。Tirkel展示了两个水印系统,以笼罩图片中的水印数字数据。数字图像水印是覆盖数据的过程。信息/数据以计算机化物质的形式,例如图片,文本,音频和视频。从根本上讲,数字水印是一种在封面图像中安装一些有价值和机密信息的方法,以后可以提取或分离出来,例如内容验证,所有者识别,内容安全性和版权保证等。
摘要 - 视频游戏和虚拟现实体验中虚拟角色的示威行为是现实主义和沉浸式的关键因素。的确,目光在与环境互动时扮演着许多角色。它不仅表明了角色在看什么,而且在言语和非语言行为以及使虚拟字符还活着中起着重要作用。凝视行为的自动计算是一个具有挑战性的问题,迄今为止,现有方法都无法在交互式环境中产生近实现的结果。 因此,我们提出了一种新型方法,该方法利用了与视觉显着性,注意力机制,accadic行为建模和头部凝视动画技术有关的几个不同领域的最新进展。 我们的方法阐明了这些进步,以收敛于多映射显着驱动的模型,该模型为非交流字符提供实时现实的凝视行为,以及与可自定义功能相比,其他用户控制,以构成各种各样的结果。 我们首先通过客观评估评估我们的方法的好处,该评估使用专门为此目的获得的眼睛跟踪数据集面对地面真理数据面对我们的视线模拟。 然后,与从真实演员捕获的凝视动画相比,我们依靠主观评估来衡量我们方法产生的凝视动画的现实水平。 我们的结果表明,我们的方法会生成视力行为,这些行为无法与捕获的凝视动画区分开。凝视行为的自动计算是一个具有挑战性的问题,迄今为止,现有方法都无法在交互式环境中产生近实现的结果。因此,我们提出了一种新型方法,该方法利用了与视觉显着性,注意力机制,accadic行为建模和头部凝视动画技术有关的几个不同领域的最新进展。我们的方法阐明了这些进步,以收敛于多映射显着驱动的模型,该模型为非交流字符提供实时现实的凝视行为,以及与可自定义功能相比,其他用户控制,以构成各种各样的结果。我们首先通过客观评估评估我们的方法的好处,该评估使用专门为此目的获得的眼睛跟踪数据集面对地面真理数据面对我们的视线模拟。然后,与从真实演员捕获的凝视动画相比,我们依靠主观评估来衡量我们方法产生的凝视动画的现实水平。我们的结果表明,我们的方法会生成视力行为,这些行为无法与捕获的凝视动画区分开。总的来说,我们认为这些结果将为实时应用程序的现实和连贯凝视动画的更自然和直观设计开辟道路。
摘要生态系统服务部分源自生物学多样性,是对人类社会的基本支持。但是,人类活动对生物多样性造成了损害,最终危害了这些关键的生态系统服务。停止自然损失并减轻这些影响需要全面的生物多样性分配数据,这是实施Kunming-Montreal全球生物多样性框架的要求。为了有效地从公众那里收集物种观察,我们在日本启动了“生物群体”移动应用程序。通过采用物种识别算法和游戏化元素,该应用程序自2019年推出以来已收集> 600万的观察结果。但是,社区采购的数据经常表现出空间和分类偏见。物种分布模型(SDMS)在适应这种偏见的同时推断物种分布。我们研究了Biome数据的质量以及合并数据如何影响SDM的性能。物种鉴定精度超过鸟类,爬行动物,哺乳动物和两栖动物的95%,但是种子植物,软体动物和鱼类得分低于90%。对日本的132种陆地动植物的分布进行了建模,并通过将我们的数据纳入传统的调查数据来提高其准确性。对于濒危物种,传统的调查数据需要> 2,000个记录以构建准确的模型(Boyce指数≥0.9),尽管将两个数据源混合在一起时仅需要CA.300记录。独特的数据分布可能解释了这一进步:生物群落数据统一涵盖了城市 - 自然梯度,而传统数据则偏向自然区域。将多个数据源结合起来提供了对日本物种分布的见解,有助于保护区域名称和生态系统服务评估。提供一个平台来积累社区来源的分布数据和改进数据处理协议,不仅有助于保存自然生态系统,还将有助于检测物种分布变化和测试生态理论。
摘要:随着新出现的AI能力增加在医疗保健领域中,侵犯用户隐私的潜力,道德问题和最终对用户的危害是威胁到这些能力成功且安全采用这些能力的最重要的关注点。由于这些风险 - 滥用这些高度敏感的数据,不适当的用户概况,缺乏足够的同意和用户不认识都是所有因素必须牢记以实现“在建立这些功能”时实现“逐个设计”,以实现医疗目的。本文旨在查看该领域最高的隐私和道德问题,并提供建议以减轻其中一些风险。我们还提出了差异隐私的技术实施,以证明将噪声添加到健康数据中如何显着改善其隐私,同时保留其效用。
摘要 - 神经疾病代表着重大的全球健康挑战,推动了大脑信号分析方法的发展。头皮脑电图(EEG)和三颅内脑电图(IEEG)广泛用于诊断和监测神经系统状况。但是,数据集异质性和任务变化在开发强大的深度学习解决方案方面构成了挑战。该评论系统地检查了基于EEG/IEEG的深度学习方法的最新进展,使用46个数据集,重点介绍了7种神经系统条件的应用。我们探讨了数据利用率,模型设计和特定于任务的适应趋势,突出了预训练的多任务模型对于可扩展的可扩展解决方案的重要性。为了进步研究,我们提出了一个标准化的基准,用于评估各种数据集的模型以增强可重复性。这项调查强调了最近的创新如何改变神经诊断,并能够开发智能,适应性的医疗保健解决方案。