基因驱动系统可以确保比正常的孟德尔分离更多地将理想性状传递给后代。成簇的规律散布回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 介导的基因驱动系统已在双翅目昆虫物种中得到证实,包括果蝇和按蚊,但尚未在其他昆虫物种中得到证实。在这里,我们开发了一种单一的 CRISPR/Cas9 介导的基因驱动构建体,用于小菜蛾,一种对十字花科作物具有高度破坏性的鳞翅目害虫。该基因驱动构建体包含一个 Cas9 基因、一个标记基因 (EGFP) 和一个靶向表型标记基因 (Pxyellow) 的 gRNA 序列,并位点特异性地插入到小菜蛾基因组中。这种基于归巢的基因驱动将包含 Cas9 基因、gRNA 和 EGFP 基因及其启动子的片段约 12 kb 复制到目标位点。总体而言,由于同源定向修复 (HDR),基因驱动效率为 6.67% – 12.59%,由于非同源末端连接 (NHEJ),抗性等位基因形成率为 80.93% – 86.77%。此外,与来自雌性亲本的转基因后代相比,来自父本的转基因后代表现出更高的基因驱动效率。这项研究证明了 CRISPR/Cas9 介导的基因驱动构建体在小菜蛾中的可行性,可将所需的性状遗传给后代。这项研究的结果为开发一种有效的 CRISPR/Cas9 介导的基因驱动系统用于害虫防治奠定了基础。
*机器人的第六级扭矩已根据致动信号的强度进行了归一化,因此可以在不同的机器人之间以及不同的磁性驱动系统之间进行更公平的比较。具有较高归一化六号扭矩的机器人将能够在该轴上产生更高的恢复扭矩。†具有相等|𝑚⃗⃗|的机器人具有传统的五元(49,50)
并在使用我们的 AI 驱动系统训练和评估模型以从文档中提取信息时调整他们的行为。我们试图了解我们的用户如何发展和建立他们的本体感觉,1 这指的是我们的身体位置和自我运动的感觉,与我们的 AI 驱动系统有关。为了帮助奠定我们的故事的基础,我们使用了两个舞者和他们互动的激励例子,因为他们都必须发展这种感觉才能成功跳舞。通过对从我们的用户群体中抽取的九名参与者进行半结构化访谈,我们试图了解他们如何学习训练我们的系统,改进其有效性,以及他们的行为如何随着时间的推移而改变。首先,我们首先描述我们的参与者在日常工作流程中使用的底层系统,以便为系统的功能提供足够的背景信息。然后,我们概述了我们的研究方法、人口统计和半结构化访谈的编码实践。在对访谈进行编码后,我们详细描述了从编码过程中收集到的各种高级见解,并使用舞蹈隐喻来帮助巩固这些见解。特别是,我们关注参与者如何学习训练系统,使用系统的误报和漏报来指导改进,并利用他们对系统的理解开始改进他们的文档注释策略以适应系统的行为。根据这些观察,我们提出了人类和人工智能合作系统设计的意义。
1. 项目摘要 目前,履带式移动骨料破碎机主要由柴油发动机驱动,驱动液压、机械离合器或电力驱动系统。该项目旨在开发和制造履带式移动骨料破碎机的工作原型,该破碎机配备下一代永磁电机和 DC(直流)总线驱动系统。作为项目的一部分,牵头组织(特雷克斯)与女王大学和其他组织(了解该技术)合作,协助将其应用于履带式移动骨料破碎机。作为技术设计的一部分,对破碎机的运行进行了分析,以了解工作周期以及该技术在其中的工作原理。此外,作为整个项目的一部分,还研究了可提供净零电能的替代电源,适合在没有主电源的地方为机械提供动力。该项目的主要目标是开发一种效率更高的履带式移动骨料破碎机,将柴油消耗量减少 20%,未来在有电源的情况下,燃料消耗量有望进一步减少高达 90%。本项目开发的技术也适用于其他半移动应用,例如环境处理设备(如 Terex Ecotec 粉碎机)。1.1 项目组织
上个世纪,蚊媒疾病传入、定植并扩展到各种新的地理范围。疟疾由雌性按蚊传播。尽管过去几十年在减轻疟疾负担方面取得了长足进步,但现在疟疾传播再次呈上升趋势,部分原因是蚊子对杀虫剂和抗疟药物产生了耐药性,最近又出现了 COVID-19 大流行的挑战,导致各种控制计划的实施效率降低。正在评估利用转基因基因驱动蚊子通过控制传播疾病的蚊子来减轻疟疾负担的效用。迄今为止,由于成功的原理验证和多代实验,在疟蚊中基于 CRISPR/Cas9 的归巢核酸内切酶设计的开发方面取得了显著进展。在本综述中,我们研究了当前基于 CRISPR/Cas9 的归巢内切酶基因驱动的开发经验,为开发用于有针对性控制野生疟疾传播蚊子种群的基因驱动系统提供了一个框架,该系统克服了诸如驱动抗性等挑战。我们还讨论了将基因驱动系统从科学发现推进到进一步研究和随后在地方性环境中的现场应用所需的其他实质性工作。
功能和优势•垂直,水平或无坑垂直炉配置。•门安装,快速交换熔体线圈,无需与真空室内的任何电源连接(无需连接的绝缘连接)•融化线圈水平平移系统,可准确浇筑教学的倾倒•完全机电驱动系统•完全机电驱动系统•完全机电或垂直的方向或垂直方向的螺栓固定和式机能转换•高速机能转移•等价•等价•等价•等价•等价•等价•等价•等价•等价•等价控制(DS/SC)•用于快速模具室撤离的大容量真空系统•具有光电位计和沉浸式热电偶熔融金属的自动温度控制•基于PLC的带有完整SCADA的基于PLC的自动控件•多区域感应型造型热量•电感型(电感型二元开关)•自动挡板交换 - 自动摇动型在无需燃料的速度范围内,可以换成模具速度的速度和铸造式燃料式燃料式燃料,并构成燃料式燃料式燃料式燃料,并构成各种燃料式燃料。
从飞机上,包括通过使用货舱,是在弹射装置中实现的方法 [2, 3]。能够适应外部因素影响的方法,从航空航天设备驱动系统领域的工程控制水平来看,被认为是最现代的方法。它允许独立且高精度地确保在飞机的所有战斗飞行模式下导弹安全分离所需的参数,而无需获得影响投放物体的气动载荷的初步数据。该方法在梁支架装置 [4] 中实现。
DuoDrive 是一种革命性的集成齿轮箱/电机概念,采用卫生的可冲洗设计。它将高效 IE5+ 电机和单级斜齿轮箱集成在一个外壳中。由于其优化的系统效率、高功率密度和极低的噪音排放,它特别适用于内部物流、食品和制药行业。与其他驱动系统相比,完整的 DuoDrive 解决方案加上简单的即插即用调试,可显著降低总拥有成本 (TCO)。
概述:当今社会的变化使铁路面临诸多挑战:如何减少对环境的影响、降低生命周期成本,并适应未来几年预计会减少的熟练劳动力数量。日立凭借其新一代 A-train* 铝制轨道车系统在解决这些问题方面处于领先地位,该系统内部更安静、转弯性能更佳,并为乘客提供比以往更轻松舒适的乘坐体验。新系列 N700 新干线 (子弹头列车) 显著缩短了旅行时间,并且通过新设计的空气动力学车头形状和振动控制技术变得更加环保。N700 还采用了一种新型混合动力驱动系统,该系统因其在减轻环境影响方面的有益效果而迅速投入生产。由于控制技术、牵引逆变器和其他电路技术的进步,它也比以前的驱动系统轻得多、更紧凑。在列车控制领域,日立开发了 ATC(自动列车控制)系统,目前该系统在日本首次应用于地铁列车。该系统支持安全可靠的地铁运营,在控制运营成本的同时,直面出生率下降和老龄化人口增加的人口困境。
本研究中考虑的零发射技术包括BEB和氢燃料电池电力总线(FCEB)。 BEB和FCEB具有相似的电动驱动系统,具有由电池提供动力的牵引电机。 但是,BEB和FCEB之间的主要区别是电池存储的量以及电池的充电方式。 BEB中的能源供应来自外部源提供的电力,通常是当地实用程序的电网,用于充电电池。 FCEB的能源供应完全在板载上,其中氢被使用燃料电池转化为电。 燃料电池的电力用于为电池充电以扩展范围。 图1. 说明了BEB和FCEB的电动驱动组件和能源。本研究中考虑的零发射技术包括BEB和氢燃料电池电力总线(FCEB)。BEB和FCEB具有相似的电动驱动系统,具有由电池提供动力的牵引电机。但是,BEB和FCEB之间的主要区别是电池存储的量以及电池的充电方式。BEB中的能源供应来自外部源提供的电力,通常是当地实用程序的电网,用于充电电池。FCEB的能源供应完全在板载上,其中氢被使用燃料电池转化为电。燃料电池的电力用于为电池充电以扩展范围。图1.