组织驻留巨噬细胞与促炎性巨噬细胞相互补充,促进动脉粥样硬化的进展。非侵入性检测它们的存在和动态变化对于理解它们在动脉粥样硬化发病机制中的作用非常重要。本研究的目的是开发一种靶向 PET 放射性示踪剂,用于在多种小鼠动脉粥样硬化模型中对 CD163 阳性 (CD163 1 ) 巨噬细胞进行成像,并评估 CD163 作为人类动脉粥样硬化生物标志物的潜力。方法:使用噬菌体展示技术鉴定 CD163 结合肽,并将其与 NODAGA 螯合剂结合进行 64 Cu 放射性标记 ([ 64 Cu]Cu-ICT-01)。使用过表达 CD163 的 U87 细胞测量 [ 64 Cu]Cu-ICT-01 的结合亲和力。在尾静脉注射后多个时间点对野生型 C57BL/6 小鼠进行生物分布研究。在多种小鼠动脉粥样硬化模型中评估了 [ 64 Cu]Cu-ICT-01 在动脉粥样硬化斑块表面上调的 CD163 1 巨噬细胞成像中的敏感性和特异性。进行免疫染色、流式细胞术和单细胞 RNA 测序以表征 CD163 在组织驻留巨噬细胞上的表达。使用人颈动脉粥样硬化斑块测量 CD163 1 驻留巨噬细胞的表达并测试 [ 64 Cu]Cu-ICT-01 的结合特异性。结果:[ 64 Cu]Cu-ICT-01 对 U87 细胞表现出高结合亲和力。生物分布研究表明,注射后 1、2 和 4 小时,血液和肾脏清除迅速,所有主要器官中的滞留率低。在 ApoE 2 / 2 小鼠模型中,[ 64 Cu]Cu-ICT-01 表现出对 CD163 1 巨噬细胞的敏感和特异性检测以及追踪动脉粥样硬化病变进展的能力;这些发现在 Ldlr 2 / 2 和 PCSK9 小鼠模型中得到进一步证实。免疫染色显示 CD163 1 巨噬细胞在斑块中的表达升高。流式细胞术和单细胞 RNA 测序证实了 CD163 在组织驻留巨噬细胞上的特异性表达。人体组织表征表明动脉粥样硬化病变中 CD163 1 巨噬细胞表达量高,体外放射自显影显示 [ 64 Cu]Cu-ICT-01 与人 CD163 特异性结合。结论:这项工作报告了一种结合 CD163 1 巨噬细胞的 PET 放射性示踪剂的开发。人类斑块中 CD163 1 驻留巨噬细胞表达升高表明 CD163 具有作为易损斑块生物标志物的潜力。[ 64 Cu]Cu-ICT-01 在成像 CD163 1 巨噬细胞方面的敏感性和特异性值得在转化环境中进一步研究。
4. van Boxelaere, M.、Clements, J.、Callaerts, P.、D'Hooge, R. 和 Callaerts-Vegh, Z. 不可预测的慢性轻度压力对两种近交系小鼠的社交和情境辨别学习有不同程度的损害。PLoS One 12, e0188537 (2017)。
胶质母细胞瘤 (GBM) 是一种恶性程度较高的脑肿瘤,预后较差。尽管免疫疗法正在被探索作为 GBM 患者的潜在治疗选择,但目前尚不清楚全身免疫疗法是否能够达到并改变脑内的肿瘤微环境。我们评估了在手术前 1 周接受抗 PD-1 免疫检查点抑制剂 nivolumab 的患者的免疫特征,并与未接受过 nivolumab 治疗而接受挽救性切除术的对照患者进行了比较。我们观察到 nivolumab 与脑内肿瘤内和组织驻留 T 细胞结合的饱和水平,这意味着 nivolumab 的饱和水平可以到达脑肿瘤。在 nivolumab 治疗后,在肿瘤驻留 T 细胞群中观察到 T 细胞活化和增殖的显著变化,并且外周 T 细胞上调趋化因子受体
学生每季度通过互联网使用 Zoom for Government 选修两门课程。课程每周上课一天,在太平洋时间正常工作时间进行两次 3 小时的课程。加州蒙特雷 NPS 的一周驻留要求包括一门研究生课程,预计于 2025 年 3 月 24 日至 28 日举行。所有课程都是同步的,教授和学生之间有实时互动。学生必须在课堂上使用摄像头和麦克风在线参与。学费由 ASN (FM&C) FM 人力资本办公室集中资助,学生承担持续服务义务。学生的指挥部负责与 NPS 一周驻留相关的 TDY 费用。学生或学生的指挥部负责教科书和课程材料的费用,估计每学年 200-800 美元。参加 NPS 毕业典礼是可选的,但鼓励参加。入学要求
中队军官学校驻留计划 项目简介:中队军官学校 (SOS) 驻留计划是一门 PME 课程,面向服役四至七年的空军上尉、同等级别的空军部选定文职人员以及国际军官。学士后 PDE 课程涵盖三个核心学习领域——领导力、战略设计和联合作战。在整个 SOS 期间,学生通过体验式练习、书面作业、简报以及个人和协作反思,团队构建和应用核心学习领域的理论、原则和实践,最终在每个核心学习领域举办一次顶点活动。领导者准备:学生将在相关课程之前完成阅读和其他准备要求。每天查看 Canvas 以了解必读内容、活动和视频。请每天准备好笔记本电脑/个人设备,并打开视频和音频以参加每节虚拟课程。
研究 • 永久机组人员驻留 • 进入太空真空 • 外部(空间)和内部研究 • 自动化、人工和机器人操作的研究 • 暴露于热层 • 高海拔和高速度下的地球观测 • 可居住的环境控制环境 • 几乎连续的数据和通信链接到任何地方
Dell 部署服务................................................................................................................................................................95 Dell 自定义部署服务...............................................................................................................................................99 Dell 驻留服务....................................................................................................................................................99 Dell 数据迁移服务.................................................................................................................................................99 Dell 企业支持服务.......................................................................................................................................100 企业连接性.......................................................................................................................................................102 Dell TechDirect......................................................................................................................................................103 Dell Technologies 咨询服务....................................................................................................................103
控制由行进量子场携带的飞行量子比特 (qubits) 对于量子网络中的相干信息传输至关重要。在本文中,我们基于描述由驻留量子系统驱动的输入输出过程的量子随机微分方程 (QSDE) 开发了一个用于对飞行量子比特的控制进行建模的通用框架。在连续时间有序光子数基础上,无限维 QSDE 被简化为驻留量子系统非幺正状态演化的低维确定性微分方程,并且传出的飞行量子比特状态可以以随机发生的量子跳跃的形式表示。正如飞行量子比特生成和变换的例子所证明的那样,这使得分析激发数不保留的一般情况成为可能。所提出的框架为飞行量子比特控制系统的设计奠定了基础,可以将先进的控制技术融入实际应用中。© 2022 Elsevier Ltd. 保留所有权利。
因果建模——基于物理学的方法,解决因果关系 • 太阳扰动对低地球轨道的影响有多大? • 低地球轨道环境会因事件而发生多大程度的变化(以及变化持续时间)? • 每个驻留空间物体将如何响应该事件,以及重新获取您的空间资产和所有其他 RSO 需要多长时间? 有助于更好地理解因果关系并减少阻力不确定性