简介尽管肺移植作为终末期肺衰竭治疗方法的接受度日益提高,但肺的长期存活率仍远远落后于其他器官。这反映在与心脏、肾脏或肝脏移植相比,肺的排斥率更高 (1)。虽然细胞排斥的诊断和治疗在过去几十年中有了很大的改善 (2),但抗体介导的排斥 (AMR) 越来越多地被认为是发病率、移植失败和慢性排斥的主要原因,而针对细胞免疫的标准免疫抑制疗法无法很好地控制这种排斥 (3, 4)。AMR 的发病机制取决于同种异体特异性 B 细胞的激活,这些细胞会分化为产生供体特异性抗体的抗体分泌细胞。此类抗体与移植物驻留的基质细胞上的同种异体抗原结合,并通过直接和间接机制引发组织损伤 (5-7)。与细胞排斥的情况不同,细胞排斥自器官移植初期就已被认识和研究,而 AMR 直到最近才被发现是一种独特且具有挑战性的临床实体 (8)。因此,虽然这种排斥形式的病因、发病机制和治疗方法尚不清楚,但临床需求证明有必要对这一过程进行重点研究。
脑转移瘤 (BM) 常发生在肺癌、乳腺癌和黑色素瘤患者中,是发病率和死亡率的主要原因。随着神经影像学的进步和癌症患者总体生存期的延长,BM 的发病率有所增加。随着局部治疗方式的进步,包括立体定向放射外科手术和导航引导显微外科手术,即使在多发病变的情况下,BM 也可以得到长期控制。然而,放射/化疗药物也会对大脑产生毒性,通常是不可逆的和累积的,而且 BM 仍然很难完全治愈。因此,我们必须了解启动和维持 BM 的分子事件,以开发有效的靶向疗法和工具,防止局部和远处治疗失败。BM 最常通过血源性扩散,血脑屏障 (BBB) 是播散性肿瘤细胞 (DTC) 进入脑实质的第一个障碍。然而,DTC 如何穿过 BBB 并定居在相对贫瘠的中枢神经系统组织中仍是未知数。即使成功在脑中驻留,独特的肿瘤微环境也以有氧糖酵解代谢受限和淋巴细胞浸润有限为特点。脑器官趋向性是原发性癌症的某些表型,有利于脑转移,可能是体细胞突变或表观遗传调节所致。最近的研究表明,原发性癌症分泌的外泌体或蛋白水解酶的过度表达可以“预处理”脑血管内皮细胞。“转移性微环境”的概念,即驻留的 DTC 在增殖前保持休眠状态并免受全身化疗和抗原暴露,得到了清除全身性癌症患者的 BM 临床观察和癌细胞与肿瘤浸润淋巴细胞相互作用的实验证据的支持。本综述通过产生和维持 BM 的分子事件研究了 BM 转移级联的现有研究,以揭示可有助于开发有效靶向疗法的线索,这些疗法可治疗已建立的 BM 并防止 BM 复发。
免疫系统采用三条防御线:(1)物理和生理障碍,(2)先天免疫,以及(3)适应性免疫。皮肤是人体最大的器官,通过充当物理障碍,是第一线防御线。皮肤免疫系统包括居民细胞,先天免疫细胞以及髓样和淋巴样的细胞。,这些组件在所有三条防御线上都提供了强大的保护。皮肤含有多种微生物组的共生和致病细菌,称为皮肤微生物组。免疫反应和细菌失衡(营养不良)的失调可能会破坏宿主防御,从而导致愈合受损,组织功能障碍和炎症状况。皮肤是一个部位,包括过敏和自身免疫性疾病,如特应性皮炎(AD),接触性皮肤炎,湿疹,白癜风,狼疮,牛皮癣,和hidradenenitis useptrativa,可能会发生。皮肤免疫的关键方面是皮肤居民细胞之间的串扰,包括肥大细胞,嗜酸性粒细胞,NK细胞,中性粒细胞,兰格汉细胞,巨噬细胞,角质形成细胞,T细胞,T细胞和神经细胞。这种相互作用驱动了免疫反应,这会随着髓样和淋巴样细胞的募集而进一步发展。例如,肥大细胞和嗜酸性粒细胞是直接型过敏性炎症的中心效应细胞,而T细胞及其亚群主导着延迟类型的过敏性炎症和某些自身免疫性疾病(1,2)。AD和牛皮癣都是常见的炎症性皮肤病,涉及皮肤屏障损伤和功能障碍。肥大细胞对于IgE介导的过敏反应至关重要,是组织驻留的细胞,而嗜酸性粒细胞是粒细胞白细胞,在炎症过程中被募集到炎症组织。炎症反应的特征是在纤维化细胞群体中,细胞代谢以及细胞因子,趋化因子和生长因子的释放。此外,皮肤微生物组在调节免疫反应中起着至关重要的作用。
组织居民巨噬细胞是辅助巨噬细胞的补充,以促进动脉粥样硬化的进展。对它们的存在和动态变异的非侵入性检测对于理解其在急剧发病机理中的作用至关重要。这项研究的目的是开发一种靶向的PET放射性示踪剂,用于成像多种小鼠动脉粥样硬化模型中的CD163阳性(CD163 1)巨噬细胞,并评估CD163作为人类动脉粥样硬化的生物标志物的潜力。方法:使用噬菌体显示鉴定CD163结合肽,并与64 Cu radiolabeling的Nodaga螯合剂([[64 CU] CU-ICT-01)结合。过表达的U87细胞用于测量[64 Cu] Cu-ICT-01的结合属性。在尾静脉注射后多个时间点对野生型C57BL/6小鼠进行了生物分布研究。在多个小鼠动脉粥样硬化模型中评估了[64 cu] cu-ict-01的敏感性和特异性cu-ict-01 1巨噬细胞在动脉粥样硬化斑块上上调的巨噬细胞。免疫染色,流量细胞仪和单细胞RNA测序,以表征CD163在组织居民巨噬细胞上的表达。人类颈动脉粥样硬化斑块用于测量CD163 1驻留巨噬细胞的表达,并测试[64 Cu] Cu-Ict-01的结合质量。结果:[64 Cu] Cu-Ict-01显示出高度与U87细胞的结合。生物分布研究表明,注射后1、2和4H的所有主要器官的肾脏迅速清除率较低。在APOE 2 /2小鼠模型中,[64 Cu] Cu-Ict-01示例敏感和特定检测CD163 1巨噬细胞以及跟踪动脉粥样硬化病变进展的能力;这些发现在LDLR 2 /2和PCSK9小鼠模型中进一步确认。免疫染色显示CD163 1巨噬细胞的表达升高。流式细胞仪和单细胞RNA测序确认CD163在组织居民宏观上的特定表达。人体组织表征表现出CD163 1巨噬细胞在动脉粥样硬化病变上的高表达,而离体自动二仪显示[64 CU] CU-ICT-01与人CD163的特定结合。结论:这项工作报告了PET放射性示意剂结合CD163 1巨噬细胞的发展。CD163 1在人斑块上驻留的巨噬细胞的表达升高,表明CD163的潜力是易受攻击的斑块的生物标志物。在成像CD163中[64 Cu] Cu-Ict-01的敏感性和特异性1巨噬细胞在转化环境中进行进一步研究。
胃肠道,其驻留的微生物和中枢神经系统通过生物-5化学信号传导(也称为“微生物组 - 脑脑轴”)连接。在生命的头几年,人脑和肠道微型生物群落都具有关键的发育窗口,从而提高了他们的发育7是共同发生的,并且可能是共同依赖的。新兴证据暗示了肠道微生物和微生物群在认知结果和神经发育障碍中的位置(例如自闭症和焦虑),但是尚未详细探讨肠道微生物代谢对典型神经发育的影响9的影响。我们调查了微生物组与361名健康儿童的神经解剖学和认知功能的10个关系,demon-11阶段,即肠道微生物分类群和基因功能的差异与总体认知功能12有关,并且与多个大脑区域的大小差异有关。使用多元线性和机器13学习(ML)模型的组合,我们表明许多物种,包括Gordonibacter Pamelae和Blautia Wexlerae,14种与较高的认知功能显着相关,而某些物种(例如Gnavus 15)等一些物种在低认知能力量表的儿童中更常见于低认知能力的儿童中,这些物种的术后量表量很少。16个微生物基因,用于参与神经活性化合物代谢的酶,尤其是短链脂肪17酸,例如乙酸盐和丙酸酯,也与认知功能有关。25此外,ML模型是18个能够使用微生物分类群来预测大脑区域的数量,许多在预测认知功能方面被确定为重要的分类单元也占据了对单个大脑区域的特征指标。20,例如,B。Wexlerae是模型中最重要的物种,预测左右半球的Parahippocampal 21区域的大小,而来自类杆菌的几种物种,包括22种产生Gaba的Gaba B. ovatus,对于预测左Accumbens地区的大小,但不是右而不是右边的。23这些发现提供了神经认知和大脑发育的潜在生物标志物,并可能导致未来的24靶标进行早期检测和早期干预。
在轨服务(IOS)可以延长卫星的使用寿命,而实施主动碎片清除(ADR)以有效解决空间碎片问题的必要性已在航天界广为人知。在新一代传感器和控制系统的发展的推动下,实现此类任务的技术解决方案研究正在蓬勃发展。除了私营公司、航天机构和大学之外,欧洲航天局(ESA)几十年来一直在开发该领域的技术。多年来,人们提出了多种安全捕获轨道物体的解决方案,其中大多数依赖于机器人系统。一个有前途的选择是使用配备高度灵巧的机械臂的自主航天器(追逐者),该机械臂能够与驻留的空间物体对接。这一操作在接近阶段和接触后都带来了复杂的技术挑战。在这方面,设计一个有效、可靠、稳健的制导、导航和控制 (GNC) 系统对于确保安全执行任务起着关键作用,该系统可以实现多种算法架构和硬件配置。这项工作展示了由与 ESA 签订合同的大学联盟开展的研究活动的成果,该研究旨在开发 GNC 系统的导航和控制子系统,用于控制配备冗余机械手的追赶者。研究中考虑了捕获前的最终接近阶段和捕获后的目标稳定阶段。提出的解决方案旨在实施联合控制策略。采用稳健控制方法来设计控制律,以应对追赶者的不确定、非线性动力学以及捕获后完整的追赶者-目标堆栈。选择基于视觉的解决方案,即依靠主动/被动光电传感器,进行相对导航。用于相对和绝对导航的完整传感器套件是 GNC 系统的一部分,包括用于机器人关节测量的传感器。为了正确验证提出的解决方案,已经开发了一个完整的数值模拟器。该软件工具可以全面评估系统性能,考虑所有相关的外部干扰和误差源。真实的合成图像生成器也用于相对导航性能评估。本文介绍了设计解决方案和初步数值测试的结果,考虑了三种任务场景,以证明该解决方案的灵活性及其对各种操作情况的适用性。
在现代军事冲突中爆炸脑损伤无处不在,发病率显着和死亡。然而,爆炸超压波引起人类特定颅内损伤的机制尚不清楚。审查了接触BLAST的服务成员的神经角膜神论者和神经外科医生的临床经验,揭示了对脑血管的损伤模式,表现为蛛网膜下腔出血,假脑膜瘤,早期弥漫性弥漫性大脑肿瘤。此外,在以下组织界面处的爆炸性脑损伤受害者(TBI)的受害者的精神病学病例系列(TBI)显示出独特的星形胶质疤痕模式:亚皮拉神经胶质板,血管周围,周围性脑膜周围和脑灰白色界面。BLAST TBI中临床和神经病理发现的统一特征是材料界面的损伤的共同点,无论是固体液体还是固差界面。这激发了以下假设:BLAST TBI是颅内机械界面处的损伤。为了研究颅内界面动力学,我们使用模型的人头简化但包含Gyri,Sulci,脑脊液(CSF),心室和脉管系统的模型进行了新的计算模拟,并具有高空间分辨率。模拟是在混合欧拉(Lagrangian仿真套件)中进行的(通过Zapotec耦合到Sierra Mechanics)。由于较大的计算网格,模拟需要高性能计算资源。这些空化事件与亚型神经胶质板处的高界面应变速率相邻。在多种曝光场景中进行了二十个模拟,包括150、250和500 kPa的超压,1 ms超压持续时间 - 在材料模型参数(脑剪切特性,颅骨弹性模块)中,多次爆炸暴露(前爆炸,侧面爆炸和壁爆炸)在材料模型参数(脑剪切特性,脑剪切特性)中。所有模拟都可以预测CSF内(脑脉管系统驻留的地方)内的流体空化,空化发生在深层且扩散成脑硫。较大的过压模拟(250和500kPa)表现出脑室内的气蚀,这也与邻近的高脑室应变率有关。此外,嵌入式核内血管结构的模型(直径较小至0.6 mm),可预测的血管内空化,邻近高血管周围应变率。
抽象背景在肿瘤微环境中发现了多种类型的产生IL-17的免疫细胞。然而,它们在CD8 +肿瘤浸润淋巴细胞(TILS)的肿瘤进展和精疲力尽中的作用尚不清楚。确定17型免疫力在肿瘤中的作用的方法,我们研究了B16F10黑色素瘤的生长以及CD8 + TIL在IL17A - / - 小鼠中的耗尽,IL17A CRE R26 DTA小鼠,RORγT抑制剂造成的小鼠,或其相应的对照组。在B16F10的先天小鼠中进行了肿瘤特异性IL-17产生的T细胞的过继转移。抗CD4或抗Ly6g抗体分别用来耗尽CD4 + T细胞或CD11b + Gr-1 HI髓样细胞的体内。通过询问TCGA数据集,评估了人类癌症中17型免疫力与T细胞衰竭之间的相关性。结果CD4 + T细胞的耗竭促进了CD8 + T细胞的耗尽,而肿瘤中产生IL-17的CD8 + T(TC17)细胞的耗尽。与产生CD8 + T(TC1)细胞不同,肿瘤浸润的TC17细胞表现出CD103 + KLRG1-IL-7RαHIHI组织驻留的记忆样表型,并且细胞溶解度不佳。产生IL-17的肿瘤特异性T细胞的产物转移增加,而产生IL-17的细胞的耗竭降低,肿瘤中PD-1 HI TIM3 + TOX +终末耗尽的CD8 + T细胞的频率。封锁IL-17或RORγT途径抑制CD8 + T细胞的耗尽,还会延迟体内肿瘤的生长。封锁IL-17或RORγT途径抑制CD8 + T细胞的耗尽,还会延迟体内肿瘤的生长。与这些结果一致,人类TCGA分析揭示了多种癌症中17型和CD8 + T细胞耗尽签名基因集之间存在很强的正相关。结论IL-17产生的细胞促进了CD8 + T细胞的末端衰竭和体内肿瘤进展,可以通过IL-17或RORγT途径的阻断来逆转。这些发现揭示了IL-17-产生细胞作为促进CD8 + T细胞耗尽的肿瘤细胞的新作用,并提出17型免疫力作为癌症免疫疗法的有希望的靶标。
脊髓损伤 (SCI) 是全球范围内导致残疾的主要原因,再生医学为开发此类损伤的新疗法带来了希望 ( James et al., 2019 )。SCI 可导致感觉和运动功能丧失,并可能对个人的生活质量产生重大影响,不仅影响身体能力,还影响情绪和社会健康 ( Eckert and Martin, 2017 )。尽管经过数十年的研究,但 SCI 仍然无法治愈。脊髓受损神经元无法再生是再生医学领域的主要挑战之一。在哺乳动物中,脊髓是一种复杂的结构,再生能力有限 ( He and Jin, 2016 ; Sofroniew, 2018 ),调节神经元再生的细胞和分子机制尚不完全清楚。最近的研究确定了促进神经元再生的新靶点和潜在策略,包括使用干细胞疗法(Okano,2010 年;Führmann 等人,2017 年)、基因疗法(Lentini 等人,2021 年;Zhang Y. 等人,2022 年)和组织工程(Madhusudanan 等人,2020 年;Cheng 等人,2021 年)。最近的研究强调了使用基因疗法促进各种情况下的再生和功能恢复。例如,通过免疫逃逸强力霉素诱导基因开关使用时间限制的神经胶质细胞系衍生的神经营养因子表达的基因疗法已显示出在增强大鼠近端神经损伤后的轴突再生和运动神经元存活方面的前景(Eggers 等人,2019 年)。研究表明,在 SOX2 介导的体内命运重编程后,驻留的星形胶质细胞会生成新的神经元(Su 等,2014;Wang 等,2016)。同样,另一项研究表明,NG2 神经胶质细胞中的异位 SOX2 可诱导神经发生、减少神经胶质瘢痕形成并生成脊髓本体神经元,促进功能恢复(Tai 等,2021)。此外,研究表明,脊髓损伤后进行 FGF22 基因治疗可促进突触形成并为神经元重新布线提供有针对性的支持,急性和早期应用可改善功能恢复(Aljovi´c 等,2023)。然而,结果显示存在一个较短的时间范围,至少在 SCI 后的最初 24 小时内,在此期间,使用 FGF22 进行突触形成基因治疗可以改善运动功能的恢复。这种有限的窗口在临床环境中可能难以实现,这可能需要探索具有更长治疗窗口的替代突触生成分子或方法。总体而言,这些发现表明基因疗法有可能激活内源性神经胶质细胞的再生能力,从而导致各种情况下的再生和功能恢复。