我们评估了在野外条件下估计驼鹿身体成分的技术。通过生物电阻抗分析 (BIA) 估计了 2 只驼鹿的体内水分,并通过尿素稀释估计了其中 1 只的体内水分。这些动物被屠宰,并对组织样本的蛋白质、水分、脂肪和灰分含量进行了分析。此外,还从其中 1 只身上解剖出腓骨肌群并进行相同的分析。化学测定的无食物体 (IFB) 脂肪测量值为鲜重的 15.4% 和 13.1%,IFB 水分含量范围为 58.6% 和 62.0%。在我们之前的估计值上再增加一个样本,我们确定腓骨肌脂肪的估计值与 IFB 脂肪有关,但有两个样本的收集方式与其余样本不同。尿素稀释法测定的空体水空间 (EBWS) 被证明不能精确估计 IFB 水量,因此我们终止了对这项技术的进一步研究。剃毛皮肤、去皮空胴体和空内脏中的脂肪百分比随 IFB 脂肪百分比线性下降,这表明这些身体成分中的脂肪被同时利用,这与长期以来认为驼鹿脂肪动员顺序的观点相矛盾。化学测定的 IFB 脂肪和水分含量与许多因素显著相关,包括 BIA 参数、活重 (LW)、总长度 (TL) 和细胞压积 (PCV)。然而,并非所有模型都包括 BIA 参数,在我们的分析中,LW 和 TL 似乎是身体成分最重要的预测因素。驼鹿的活重 (LW) 最好通过结合总长度、心脏周长和状况等级评分的线性模型进行预测。
s Hiras Moose(Alces Alces Shirasi)出现在爱达荷州的大部分地区,除了该州西南角。驼鹿都受到猎人和非猎人的高度评价,提供具有经济和审美价值的消费和非消费机会。在过去的一个世纪中,他们已知的范围已从爱达荷州北部和东部的小区域扩展到目前的分布。在此期间的人口规模也有所增加,可能在1990年代末或2000年代初期达到顶峰。当前的调查数据,轶事信息和收获数据表明,驼鹿最近在该州的部分地区下降。几个因素可能会影响驼鹿种群,包括捕食,栖息地变化(例如道路,发展和木材收获),气候,疾病,寄生虫及其组合。
免责声明这一信息是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,或其任何雇员均未对任何信息,设备,产品或过程披露或代表其使用将不会侵犯私人拥有的私有权利。参考文献以商品名称,商标,制造商或其他方式指向任何特定的商业产品,流程或服务,并不一定构成或暗示其认可,建议或受到美国政府或其任何机构的支持。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
添加剂制造(AM)技术由于能够快速生产,原型和自定义设计而越来越多地在各种应用领域中采用。AM技术在核材料方面有明显的机会,包括加速制造过程和成本降低。在爱达荷州国家实验室(INL)的多个物理学面向对象的模拟环境(MOOSE)中,正在开发AM过程的高层建模和模拟(M&S),以支持AM过程优化并提供对所涉及的各种物理相互作用的基本了解。在本文中,我们采用贝叶斯逆不确定性定量(UQ)来量化AM基于驼鹿的熔体模型中的输入不确定性。逆UQ是成型量化输入不确定性的过程,同时保持模型预测与测量数据一致。逆UQ过程考虑了模型,代码和数据的不可能,而同时表征输入参数中不确定的分布,而不是仅提供最佳位点估计值。我们使用熔体池几何形状(长度和深度)的测量数据来量化多个熔体池模型参数中的不确定性。模拟结果与实验数据的一致性提高了。可以使用所得参数不确定性来代替未来的不确定性,敏感性和验证研究中的专家意见。
免责声明这一信息是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,或其任何雇员均未对任何信息,设备,产品或过程披露或代表其使用将不会侵犯私人拥有的私有权利。参考文献以商品名称,商标,制造商或其他方式指向任何特定的商业产品,流程或服务,并不一定构成或暗示其认可,建议或受到美国政府或其任何机构的支持。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
摘要:由于宿主之间观察到接触的困难,我们对野生动植物多层病原体传播系统的理解通常是不完整的。了解这些相互作用对于防止疾病引起的野生动植物的下降至关重要。高通量测序技术的扩散为更好地探索这些隐秘相互作用提供了新的机会。多层寄生虫Parelaphaphoptrongylus tenuis是一些驼鹿(Alces Alces)人口的主要死亡原因,受到中西部和加拿大东北部和东北地区局部灭绝的威胁。驼鹿合同P. tenuis通过食用受感染的腹足动物中间体宿主,但对哪种腹足动物的驼鹿消耗量知之甚少。为了获得更多的见解,我们在258种地理参与和时间分层的驼鹿粪便样本上使用了一种遗传元法编码方法,该方法是从美国中北部人口下降的2017年5月至2017年10月收集的。我们在五个阳性样品中检测到了三种腹足动物的驼鹿消耗。其中两个(点细分和螺旋瘤SP。)已对托管假单胞菌的能力进行了最小的研究,而一位(Zonitoides arboreus)是一位有记录良好的宿主。驼鹿消耗本文记录的腹足动物发生在6月和9月。我们的发现证明,驼鹿消耗了已知被P. tenuis感染的腹足动物物种,并证明粪便metabarcoding可以为多种病原体传播系统的宿主之间的相互作用提供新的见解。确定和提高了测试敏感性后,这些方法也可以扩展以记录其他多次疾病系统中的重要相互作用。关键词:脑虫,腹足动物,脑膜蠕虫,明尼苏达州,分子流行病学,驼鹿,溢出传播。
在美国的34个州和加拿大的4个省份不可避免地扩展(5)。CWD首次出现在挪威的野生驯鹿(Rangifer Tarandus),此后不久,在2 Moose(Alces Alces Alces)中出现。作为挪威广泛的监视计划的一部分,研究人员已经认同21驯鹿,13个驼鹿和3只红鹿(Cervus Elaphus),被CWD感染。在欧洲有一个野生驯鹿或驼鹿的国家 /地区进行了为期3年的活动计划,该计划在芬兰的3 Muose和瑞典的4 Muose中揭示了CWD。尚不清楚在Eu-Rope中鉴定出的CWD疾病的起源。越来越多的数据表明,北欧病例中发现的prion菌菌株与北美的病毒菌株(6-8)不同。在驯鹿中发现的菌株与北美的菌株在PRP SC的分配方面与北美菌株非常相似,首先是淋巴系统中的,后来在大脑中,以及自然宿主中具有传染性的特征。然而,在欧洲驯鹿中发现的CWD菌株与北美的CWD并不相同(9,10)。此外,与北美菌株相比,北欧国家的驼鹿的CWD菌株表现出很大的差异。那些在挪威,芬兰和瑞典具有零星地理分布的驼鹿,具有以前没有记录的独特特征,并提出了它们的感染为零星的CWD(11)。此外,搜索者已经观察到了单个驼鹿分离株之间的PRP SC和应变变化(9、10、12、13)。在银行田鼠和表达子宫颈PRP的转基因小鼠中的传播研究表明,驼鹿中的CWD Prions显然与挪威驯鹿和所研究的北美分离株的CWD Prions显然有所不同。搜索者研究受CWD影响的驼鹿并使用传统的免疫探测测试(Elisa,Western
加拿大开发商协会2020年营销加拿大奖:1。COVID-19恢复项目/计划。该市的提交包括市议会实施的经济复苏计划,以及与Moose Jaw&District商会,旅游驼鹿Jaw,Downtown Business Association,Wow Factor Media以及商业社区的几个成员建立的合作伙伴关系。这些伙伴关系导致创建每周智囊团恢复会议,市中心弹出式露台,虚拟驼鹿Jaw Marketplace等。2。品牌身份。该城市的提交重点是将驼鹿爪子重塑为“加拿大最臭名昭著的城市”所采用的合作方法。该市于2018年10月举办了公共品牌演讲,包括市议会,旅游驼鹿,商会,社区团体和本地企业,从事品牌讨论,导致2020年2月12日推出了该市新品牌徽标,网站和应用程序。
慢性浪费疾病(CWD)是影响子宫颈的神经系统的一种疾病,包括鹿,麋鹿,驯鹿和驼鹿。由prion或异常蛋白质引起的CWD导致神经系统退化。随着疾病的发展,动物开始表现出异常的行为,体重减轻以及对正常身体功能的控制丧失。没有已知的治疗方法。动物在感染后可能没有明显的疾病迹象,因此,即使看起来健康,鹿,麋鹿,驯鹿或驼鹿也可能被感染并脱落。CWD具有传染性,感染性的王室在动物和受污染的环境(包括植物和土壤)之间传播,这些环境会随着时间的流逝而积累。很难消除王室,环境可能会在多年内保持感染力。
根据佛蒙特州和联邦法律,野生动物属于佛蒙特州人民,因此代表公众保护和管理佛蒙特州的野生动物资源是佛蒙特州鱼类和野生动物部门的义务。该部门长期以来一直使用最佳的科学知识来管理佛蒙特州的大型野生动物物种,这些科学知识是基于强有力的公众意见流程得出的。在过去的二十年里,佛蒙特州的四种大型野生动物物种——白尾鹿、黑熊、驼鹿和野生火鸡——的管理一直由一项全面的大型野生动物管理计划协调。该计划每十年更新一次,确定了这些物种面临的问题,制定了可持续的种群和管理目标,然后规定了实现这些目标所需的策略。将野生火鸡管理与驼鹿管理结合起来可能看起来很奇怪,但采用多物种管理方法是合适且必要的,因为这四种物种都面临着重叠的挑战,作为一个群体,它们代表了佛蒙特州狩猎和野生动物观赏机会的支柱。此外,野生火鸡作为大型猎物物种的地位反映了其在过去 50 年中在野生动物恢复工作中获得的高度关注。