b'b't量子Zeno效应以最简单的形式描述了量子系统的频率测量可以减慢其时间演变的现象,最终导致其停止完全改变。已广泛研究了封闭的量子系统[BN67,MS77,CHE72,FRI76,FP08,EI05,EI21]和开放量子系统[MS03,BZ18,BFN + 20,MW19,MW19,MW19,MAT04,GL \ XC2 \ XC2 \ XC2 \ XA8U16,BDS21,MRM MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR M \ XC2 \ XA8O24]和现象的实验验证是在[IHBW90,FGMR01,SMB + 06,SHC + 14]中实现的。量子ZENO效应具有各种应用,例如在控制反应[FJP04,HRB + 06],量子误差校正[EARV04,PSRDL12]和状态准备[NTY03,NUY04,WYN08]中。在这里,我们考虑以下在量子动力学半群下进化的无限二维开放量子系统中的量子zeno效应的一般设置,该系统由e t l'
摘要信号使者最近引入了一种新的Asyn-Chronous Key协议协议协议,称为PQXDH(量子后扩展Diffie-Hellman),该协议旨在提供Quantum Forward的秘密,此外,除了以前的X3DH(Extended Diffie-Hellman)已提供的真实性和机密性保证外。更确切地说,PQXDH试图保护Mes-sages的机密性免受收获 - 少数分解量的攻击。在这项工作中,我们正式指定PQXDH协议,并使用两个正式的验证工具分析其安全性,即P Roverif和C Rypto V Erif。特别是我们询问PQXDH是否保留了X3DH的保证,是否涉及Quantum Forward Corport Crecrecy,以及是否可以与X3DH一起进行策划。我们的分析确定了PQXDH指定中的几个缺陷和潜在的漏洞,尽管由于我们在本文中描述的特定实现选择,这些漏洞在信号应用中并非在信号应用中得到利用。为了证明当前实施的安全性,我们的分析特别强调了对KEM的附加约束属性的需求,我们正式为Kyber定义并证明了Kyber。我们与协议设计师合作,根据我们的发现开发更新的协议规范,在该发现中,每个更改均已正式验证和验证。这项工作确定了一些陷阱,即社区应意识到升级协议的升级后安全。它还证明了与协议设计合作使用正式验证的实用性。
方法:这项研究是一项现实研究,旨在预测GC/EC患者的VTE。数据是从2018年1月1日至2023年6月31日之间在四川省人民医院诊断为GC/EC的住院医师收集的。使用九种监督学习算法,基于56个可用变量开发了576个预测模型。随后,使用最佳性能模型的前12个特征变量采用了简化的建模方法。评估模型预测性能的主要度量是ROC曲线下的面积(AUC)。此外,还采用了用于构建本研究最佳模型的培训数据,以外部验证几种现有的评估模型,包括Padua,Caprini,Khorana和Compass-Cat分数。
抽象目标是量化由免疫检查点抑制剂(ICI)治疗的预先存在的自身免疫性疾病(付费)患者的免疫相关不良事件(IRAE)的风险。方法 - 对照对照研究,对法国多中心前瞻性群体进行了黑色素瘤患者,与IRAE危险因素和肿瘤学分期相匹配。通过逻辑回归评估IRAE的风险。 结果包括110例有报酬的患者,并与330个对照匹配,从2013年3月到2020年10月。。 在病例中的中位随访期间,对照组为6.9个月,与对照组相比,在病例中发展全级和≥3级伊拉斯的ORS(95%CI(1.56至2.27))和1.44(分别为95%CI(1.08至1.82))。 带薪患者的多种伊拉斯(或1.46,95%CI(1.15至2.67))的风险增加,而IRAE发作的时间较短。 相比之下,与IRAE相关的死亡率或治疗率没有差异,并且具有里程碑意义的分析显示在病例中24个月的生存率更好(P = 0.02)。 30%的病例在随访期间经历了有偿爆发,基线免疫抑制并不能阻止IRAE发生。 最后,我们报告了付费临床子集与特定器官特定的IRAE之间的关联。 在我们的研究中结论是,有报酬的患者面临全级,严重和多个伊拉斯的风险,但比对照组的生存期更好的24个月。 因此,有报酬的患者应有资格接受ICI治疗,但受益于IRAE发生的密切监测,尤其是在治疗的头几个月中。通过逻辑回归评估IRAE的风险。结果包括110例有报酬的患者,并与330个对照匹配,从2013年3月到2020年10月。在病例中的中位随访期间,对照组为6.9个月,与对照组相比,在病例中发展全级和≥3级伊拉斯的ORS(95%CI(1.56至2.27))和1.44(分别为95%CI(1.08至1.82))。带薪患者的多种伊拉斯(或1.46,95%CI(1.15至2.67))的风险增加,而IRAE发作的时间较短。相比之下,与IRAE相关的死亡率或治疗率没有差异,并且具有里程碑意义的分析显示在病例中24个月的生存率更好(P = 0.02)。30%的病例在随访期间经历了有偿爆发,基线免疫抑制并不能阻止IRAE发生。最后,我们报告了付费临床子集与特定器官特定的IRAE之间的关联。在我们的研究中结论是,有报酬的患者面临全级,严重和多个伊拉斯的风险,但比对照组的生存期更好的24个月。因此,有报酬的患者应有资格接受ICI治疗,但受益于IRAE发生的密切监测,尤其是在治疗的头几个月中。
françoisPaillard,OphélieFlageul,GuillaumeMahé,Bruno Laviolle,Caroline Dourmap和Al ..用于预防心血管的短频率调查表的有效和可重复性。心血管疾病的档案,2021,114(8-9),pp.570-576。10.1016/j.acvd.2020.12.008。hal-03222665
这项研究介绍了一种创新的智能数字管理绩效测量模型,该模型通过传统的绩效指标进行人工智能,以解决现代数字管理的复杂性。该模型旨在通过利用实时数据分析和AI驱动算法来提供对管理有效性的定量和定性见解。在一项涉及经历数字化转型不同行业的1200多名受访者的验证性研究中,采用了先进的统计技术主题,例如验证性因素分析和结构方程模型,以验证框架。与召开测量方法相比,调查结果表明关键绩效指标的显着改善,包括决策速度的30%和资源利用效率提高25%。这项研究基于既定的理论基础,并将最新进步纳入了AI和大数据分析中。通过将AI增强指标与传统的管理指标集成,该模型确认了数字绩效测量的可行性,同时为在动态环境中提供了强大的管理决策工具。调查结果提供了令人信服的经验证明,即AI驱动的分析可以揭示潜在的绩效模式并提供可行的见解,从而使组织能够优化资源分配并提高整体运营效率。此外,此搜索重点介绍了开发适应性的测量工具的重要性,这些工具与不断发展的数字景观保持同步。
到西班牙巴塞罗那的催化研究所; B对巴塞罗那,基金会或大学研究所的研究的支持单位,以卫生乔治·戈尔和古琳娜(Idiapjgol)的主要关注。 C学校。西班牙巴塞罗那市巴塞罗那大学医学院临床基础和系;斯洛文尼亚的Maribor Fality Medical;保加利亚;以及医学院汉诺威医学院,伦德大学,马尔姆伦敦大学欧元或瑞典到西班牙巴塞罗那的催化研究所; B对巴塞罗那,基金会或大学研究所的研究的支持单位,以卫生乔治·戈尔和古琳娜(Idiapjgol)的主要关注。 C学校。西班牙巴塞罗那市巴塞罗那大学医学院临床基础和系;斯洛文尼亚的Maribor Fality Medical;保加利亚;以及医学院汉诺威医学院,伦德大学,马尔姆伦敦大学欧元或瑞典
作为数字身份的新兴范式,分散的身份(DID)在各个方面都具有比传统身份管理方法的优势,例如增强以用户为中心的在线在线服务并确保完整的用户自主权和控制。验证凭证(VC)技术用于促进跨多个实体的分散ID访问控制。但是,现有计划通常依赖于分布式的公钥基础,该基础也会引起挑战,例如上下文信息推论,密钥曝光和发行人数据泄漏。为了解决上述问题,本文提出了一个永久性发行人隐藏(PIH),这是首次使用签名的无VC模型(名为SLVC-DIDA)进行了多方身份验证框架。我们提出的计划避免了通过采用哈希和发行人会员证明来签署密钥的依赖,这支持通用零知识多党派进行了认证,从而消除了其他技术集成。我们采用零知识的RSA蓄能器来维护发行人集的匿名性,从而通过基于默克尔树的VC列表来保护身份属性的隐私,从而实现公众验证。通过消除对公钥基础设施(PKI)的依赖,SLVC- DIDA可以完全分散发行和验证DIDS。此外,我们的计划通过实施零知识发行者集和VC列表来确保PIH,从而有效地减轻了关键泄漏和上下文推理攻击的风险。我们的实验进一步评估了SLVC-DIDA的有效性和实用性。
验证者或奖励模型通常用于增强大语言模型(LLM)的推理性能。一种常见的方法是最好的N方法,其中LLM生成的N候选解决方案由验证者排名,并且选择了最好的解决方案。基于LLM的验证者通常被培训为判别性分类器以评分解决方案,但它们并未利用验证的LLM的文本生成能力。为了克服这一限制,我们使用无处不在的下一步预测目标提出了培训验证仪,共同核对和解决方案生成。与标准验证符相比,这种生成验证符(GENRM)可以从LLM的几个优点中受益:它们与指导调整无缝集成,启用了经过思考的推理,并且可以通过多数投票利用额外的测试时间计算来获得更好的验证。我们证明GENRM的表现优于歧视性,DPO验证者和LLM-AS-A-a-gudge,导致了最佳N的性能增长,即5%→45。算法任务的3%和73%→93。GSM8K的4%。 在易于硬化的概括设置中,我们观察到28%→44的改善。 数学的6%,37。 9%→53。 MMLU摘要代数为5%。 此外,我们发现具有合成验证原理的训练GENRM足以在数学问题上发现微妙的错误。 最后,我们证明GENRM会以模型大小和测试时间计算来表现出色。GSM8K的4%。在易于硬化的概括设置中,我们观察到28%→44的改善。数学的6%,37。 9%→53。 MMLU摘要代数为5%。 此外,我们发现具有合成验证原理的训练GENRM足以在数学问题上发现微妙的错误。 最后,我们证明GENRM会以模型大小和测试时间计算来表现出色。数学的6%,37。9%→53。MMLU摘要代数为5%。 此外,我们发现具有合成验证原理的训练GENRM足以在数学问题上发现微妙的错误。 最后,我们证明GENRM会以模型大小和测试时间计算来表现出色。MMLU摘要代数为5%。此外,我们发现具有合成验证原理的训练GENRM足以在数学问题上发现微妙的错误。最后,我们证明GENRM会以模型大小和测试时间计算来表现出色。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。