摘要简介糖尿病(DM)是一种主要的非传染病,患病率越来越高。未诊断的DM并不少见,可能导致严重的并发症和死亡率。在较早的疾病阶段识别高风险个体,即糖尿病前(前DM)对于延迟进展至关重要。现有的风险模型主要依赖于不可修道的因素仅预测DM风险,而很少有人适用于中国人。本研究旨在开发和验证风险预测功能,该功能纳入了可修改的生活方式因素,以检测中国成年人在初级保健中的DM和PER-DM。方法和分析使用香港人口健康调查(PHS)2014/2015和12个月的前瞻性研究来开发DM/PER-DM风险预测函数,以验证DM/PEREDM患者的发现功能。将从PHS 2014/2015中提取1857名没有自我报告的DM/Pre-DM的中国成年人的数据,以使用逻辑回归和机器学习方法开发DM/PER-DM风险模型。1014名中国成年人将从香港的公共和私人初级保健诊所招募,其中没有DM/PER-DM的已知历史。他们将在招募中填写有关口服葡萄糖耐量测试(OGTT)和血红蛋白A1C(HBA1C)的相关危险因素和血液测试的问卷,如果第一次血液检查为阴性,则为12个月。在任何血液检查中,OGTT或HBA1C定义的阳性病例是DM/ PER-DM。研究结果将在同行评审期刊中提交出版。将计算接收器操作特征曲线,灵敏度,特异性,预测值和模型的负预测值在检测DM/PER-DM中。伦理和传播伦理批准已从香港/香港医院管理局香港西部集群(UW19-831)和香港医院库洛恩中央/九龙东部集群(KC/KE)-21-0042/er-3)获得了香港/香港医院管理局。