版权 除非特殊情况,出版商将在互联网上保留本文档(或其可能的替代品),自出版之日起保留 25 年。文档的在线可用性意味着任何人都可以永久阅读、下载或打印单份副本供自己使用,也可以将其不加修改地用于非商业研究和教育目的。后续的版权转让不能撤销此许可。文档的所有其他用途均需征得版权所有者的同意。出版商已采取技术和行政措施来确保真实性、安全性和可访问性。根据知识产权法,作者有权在其作品被访问时被提及,如上所述,并受到保护以防止侵权。有关林雪平大学电子出版社及其出版程序和文档完整性保证的更多信息,请参阅其 www 主页:http://www.ep.liu.se/。© Marcus Johansson
近年来,硬件供应商已引入了指定的VM档案(例如AMD SEV-SNP,Intel TDX和ARM CCA)。他们消除了对管理程序的信任,并导致对AMD Secure VM Service模块(SVSM)等安全模块的需求。这些安全模块旨在为客人提供以前由管理程序提供的安全功能。由于此类模块的安全性至关重要,因此生锈用于实施其已知的MEM-ORY安全功能。但是,使用Rust进行实施并不能保证正确性,并且使用不安全的RUST会损害内存安全保证。在本文中,我们介绍了v eri sm o,这是AMD SEV-SNP上的第一个验证的安全模块。v eri sm o具有功能齐全,并提供了安全功能,例如代码完整性,运行时测量和秘密管理。更重要的是,作为基于生锈的实现,V eri sm o被充分验证了功能正确性,安全信息流以及VM的确定性和完整性。验证v eri sm o的关键挑战是,不信任的虚拟机能够中断v eri sm o的执行并随时修改硬件状态。我们通过将验证分为两层来应对这一挑战。上层处理并发的处理程序执行,而下层则处理V eri Smo的同时执行。与基于C的实现相结合时,VERI SM O会达到相似的性能。在验证V eri sm o时,我们确定了对VM符合性的微妙要求,并发现它被AMD SVSM忽略了。这证明了正式验证的必要性。
参考:1 Cancer.net。肺癌 - 非小细胞:统计。 2024年3月访问。 2个国家癌症研究所。 SEER癌症统计概况:肺癌和支气管癌,2015年。 2024年3月访问。 3 Chen R等。 J Hemal Oncol。 2020; 13(1):58。 4 Majeed U等。 J hematol oncol。 2021; 14(1):108 5 Pircher A等。 抗癌研究。 2020; 70(5):287-294。 6 Globocan 2022。 欧洲。 访问2024年2月。 7国家癌症研究所。 seer癌统计事实:女性乳腺癌亚型。 2024年3月访问。 8 IQBAL N等。 mol biol int。 2014; 852748。 9 Lin M等。 J癌。 2020; 10.7150/jca.48944。 10 Lloyd M R等。 Clin Cancer Res。 2022; 28(5):821-30。 11 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。肺癌 - 非小细胞:统计。2024年3月访问。2个国家癌症研究所。 SEER癌症统计概况:肺癌和支气管癌,2015年。 2024年3月访问。 3 Chen R等。 J Hemal Oncol。 2020; 13(1):58。 4 Majeed U等。 J hematol oncol。 2021; 14(1):108 5 Pircher A等。 抗癌研究。 2020; 70(5):287-294。 6 Globocan 2022。 欧洲。 访问2024年2月。 7国家癌症研究所。 seer癌统计事实:女性乳腺癌亚型。 2024年3月访问。 8 IQBAL N等。 mol biol int。 2014; 852748。 9 Lin M等。 J癌。 2020; 10.7150/jca.48944。 10 Lloyd M R等。 Clin Cancer Res。 2022; 28(5):821-30。 11 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。2个国家癌症研究所。SEER癌症统计概况:肺癌和支气管癌,2015年。2024年3月访问。3 Chen R等。 J Hemal Oncol。 2020; 13(1):58。 4 Majeed U等。 J hematol oncol。 2021; 14(1):108 5 Pircher A等。 抗癌研究。 2020; 70(5):287-294。 6 Globocan 2022。 欧洲。 访问2024年2月。 7国家癌症研究所。 seer癌统计事实:女性乳腺癌亚型。 2024年3月访问。 8 IQBAL N等。 mol biol int。 2014; 852748。 9 Lin M等。 J癌。 2020; 10.7150/jca.48944。 10 Lloyd M R等。 Clin Cancer Res。 2022; 28(5):821-30。 11 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。3 Chen R等。J Hemal Oncol。2020; 13(1):58。4 Majeed U等。J hematol oncol。2021; 14(1):108 5 Pircher A等。抗癌研究。2020; 70(5):287-294。6 Globocan 2022。欧洲。访问2024年2月。7国家癌症研究所。 seer癌统计事实:女性乳腺癌亚型。 2024年3月访问。 8 IQBAL N等。 mol biol int。 2014; 852748。 9 Lin M等。 J癌。 2020; 10.7150/jca.48944。 10 Lloyd M R等。 Clin Cancer Res。 2022; 28(5):821-30。 11 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。7国家癌症研究所。seer癌统计事实:女性乳腺癌亚型。2024年3月访问。8 IQBAL N等。 mol biol int。 2014; 852748。 9 Lin M等。 J癌。 2020; 10.7150/jca.48944。 10 Lloyd M R等。 Clin Cancer Res。 2022; 28(5):821-30。 11 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。8 IQBAL N等。mol biol int。2014; 852748。9 Lin M等。 J癌。 2020; 10.7150/jca.48944。 10 Lloyd M R等。 Clin Cancer Res。 2022; 28(5):821-30。 11 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。9 Lin M等。J癌。 2020; 10.7150/jca.48944。 10 Lloyd M R等。 Clin Cancer Res。 2022; 28(5):821-30。 11 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。J癌。2020; 10.7150/jca.48944。10 Lloyd M R等。Clin Cancer Res。 2022; 28(5):821-30。 11 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。Clin Cancer Res。2022; 28(5):821-30。11 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。11 Goldenberg D等。oncotarget。2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。2018; 9(48):28989-29006。12 Mito R等。Pathol int。2020; 70(5):287-294。13 Vidula N等。乳腺癌治疗。2022年8月; 194(3):569-575。14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。14Rodríguez-Abreau D等。ann onc。2021 Jul; 32(7):881-895。15美国癌症学会。针对非小细胞肺癌的靶向药物治疗。2024年3月访问。
摘要 —混合量子-经典工作流已成为执行变分算法和其他量子模拟技术的标准方法,这些技术是噪声中型量子 (NISQ) 计算机的关键应用。验证这些模拟是一项重要任务,有助于衡量量子计算机发展的进展,而经典模拟可以作为实现这一目标的工具。具有可量化误差界限的精确和更具可扩展性的近似方法都可用于验证任务,其中适用的指标包括与可计算的基本事实的距离、误差模型与数据的拟合质量等。在这里,我们提出了一个库扩展,其中包括基于可在高性能计算机上执行的可扩展混合工作流的量子模拟验证方法。我们提供使用基于张量网络和稳定器模拟器的近似方法来限制 NISQ 硬件上量子模拟的误差的示例。索引术语 —量子计算、量子编程
系统识别方法通过测量动态系统的输入和输出来组成一个或一系列数学模型。提取的模型可以表征整个飞机或部件子系统行为(例如执行器和机载信号处理算法)的响应。本文讨论了频域系统识别方法在飞机飞行控制系统的开发和集成中的应用。使用频率响应综合识别 (CIFER ® ) 系统识别工具,可以提取和分析从非参数频率响应到传递函数和高阶状态空间表示等不同复杂程度的模型。结果显示了艾姆斯研究中心众多飞行和模拟程序的测试数据,包括旋翼机、固定翼飞机、先进短距起飞和垂直着陆 (ASTOVL)、垂直/短距起飞和着陆 (V/STOL)、倾转旋翼飞机和风洞中的旋翼实验。对于这类广泛的系统,可以实现出色的系统特性和动态响应预测。示例说明了系统识别技术在飞机开发的整个生命周期中(从初始规格到模拟和台架测试,再到飞行测试优化)提供集成的动态响应数据流中所发挥的作用。
在上图中,我们在HA模式下再次有一对FortiGate VM。FortiGate聚类协议(FGCP)提供故障转移保护,即使其中一个集群单元丢失连接,群集也可以提供FortiGate服务。FGCP也是第2层心跳,它指定了Fortigate单位在HA群集中的通信并保持群集运行的方式。FGCP将虚拟MAC地址分配给HA群集中的每个主单元接口。 虚拟MAC地址已经到位,因此,如果发生故障转移,则新的主要单元接口将具有与失败的主单元接口相同的MAC地址。 如果MAC地址在故障转移后要更改,则网络将需要更长的时间才能恢复。 流量是在进入Internet网关之前通过Fortigates从其他虚拟网络路由的。FGCP将虚拟MAC地址分配给HA群集中的每个主单元接口。虚拟MAC地址已经到位,因此,如果发生故障转移,则新的主要单元接口将具有与失败的主单元接口相同的MAC地址。如果MAC地址在故障转移后要更改,则网络将需要更长的时间才能恢复。流量是在进入Internet网关之前通过Fortigates从其他虚拟网络路由的。
FIDO2:一项关于无密码身份验证的全面研究Aditya Mitra和Anisha Ghosh Adityamitra5102@gmail.com,ghoshanisha2002@gmail.com vit-ap University,Andhra Pradesh,印度。摘要:二十世纪被标记为数字时代。它涉及在生活的各个方面使用计算机和其他设备(例如智能手机)。了解这种设备的用法并保护自己免受数字平台上的恶意演员的侵害变得越来越重要。身份验证的概念并不是什么新鲜事物,它始于1960年代FernandoCorbató,当时他开发了MIT兼容的时间共享系统(CTSS)的密码系统[1]。但是,我们已经从使用密码和个人识别号(PIN)方面走了很长的路要走,因为它们在面对现代对手和网络钓鱼(例如网络钓鱼)的攻击方面变得虚弱。本文介绍并讨论了用于保护数字资源和资产的无密码身份验证的FIDO2标准。FIDO2标准使用加密挑战响应系统与受信任的计算相结合,使身份验证的过程真正抗网络钓鱼[2]。本文介绍了FIDO2规范标准和实施的全面观点。
在数字设计上下文中的验证是在释放或部署系统之前测试和验证其行为的过程。这是设计过程的基础部分,由于获得完整覆盖的复杂性,通常需要超过一半的开发时间。传统的验证技术,例如定向测试和约束随机测试,通常无法捕获复杂系统中的关键边缘病例。为了解决这一差距,本论文探讨了钢筋学习(RL)在RISC-V内核的功能验证中的应用,这些核心正在变得越来越流行,特别是通过自动生成的组装代码来增强测试覆盖范围。此调查首先要为RISC-V内核建立一个测试台,旨在使用SystemVerilog(SV)中的通用验证方法(UVM)和Spike指令将模拟器与黄金模型相同。然后将测试台转换为基于Python的环境,使用PYUVM库和Verilator作为模拟器,以启用开源设置。这有助于与流中所需的其余组件的集成,例如自定义指令生成器和覆盖范围集合,为闭环指令生成和核心状态观察提供了灵活的框架。我们此时介绍RL代理,以基于覆盖范围指标和中央处理单元(CPU)状态(例如,注册文件和程序计数器)指导指令生成器。在两种情况下,都进行了不同的状态向量和奖励功能。由于动作空间是如此巨大,并且从未被其他研究作品解决,因此第一代理实施涉及定制的RL代理,依靠体育馆对环境具有标准的API。它使用基于神经网络的深Q学习代理作为函数近似器,分为状态编码器和专业的儿童神经网络(NN),以避免动作空间大小的爆炸。第二种方法使用StableBaseline 3(SB3)库,提供已建立的RL算法,包括近端策略优化和多输入策略。最后,我们将RL代理商获得的训练后结果与通过向指令生成器请求随机指令获得的平均覆盖范围进行了比较。第一代理方法由于NN没有融合而没有显示出任何改进,这是由于
摘要。这项工作的主要目标是构建既有承诺又是泄漏弹性的身份验证的加密(AE)。作为这种方法,我们将通用组成视为构建AE方案的众所周知的方法。Barwell等人已经分析了通用组成方案的泄漏弹性。(Asiacrypt'17),为了实施安全性,事实并非如此。我们通过对犯下安全性的通用组成范式进行单独分析来填补这一空白,从而给出正面和负面的结果:通过具体攻击,我们表明加密 - 然后是-MAC不承诺。此外,鉴于基本方案满足了我们为此目的引入的安全概念,因此我们证明了加密和MAC正在承诺。我们后来通过提供满足它们的计划来证明这些新观念。mac-然后将加入的限制更加困难,因为该标签未与密文旁边输出,因为它是针对其他两种组合方法完成的。尽管如此,我们对Mac-then-contrypt进行了详细的启发式分析,以实施安全性,这是确定的结果,这是未来工作的开放任务。我们的结果结合了一个事实,即仅加密-AC会产生泄漏 - 弹性的AE方案,表明人们无法获得通过通用组成进行投入和泄漏弹性的AE方案。作为构建承诺和泄漏弹性AE的第二种方法,我们开发了一种通用转换,该转换将任意AE方案变成实现这两种属性的方案。转换依赖于既有结合的键函数,即,很难找到导致相同输出的键输入对以及泄漏 - 弹性的伪数。