在本文中,我们研究了围绕有限计划的限制性问题的七个推理任务的计算复杂性。我们为标准的经典计划和分层任务网络(HTN)计划做到这一点,每个计划都用于接地和取消代表。虽然有限计划的存在复杂性以古典规划而闻名,但尚未对HTN计划进行研究。进行计划验证,除了提起的HTN计划外,两种形式主义都可用于两种形式主义。我们将介绍提起HTN计划中计划验证的复杂性的下层和上限,并为其扎根的对应物提供一些新的见解,在这种情况下,我们表明验证不仅是一般案例中的NP - 已完成,而且已经严格限制了特殊情况。最后,我们展示了有关验证给定计划的最佳性的复杂性,并讨论了其与有限计划存在问题的联系。
量子计算机有望以比传统计算机快得多的速度执行某些计算任务。这违反了扩展的丘奇-图灵论题,该论题认为任何物理上可实现的计算模型都可以用经典图灵机有效地模拟。事实上,量子计算机最初是作为模拟量子力学系统的一种手段而提出的 [1],这项任务在传统上被认为是一项困难的任务。在识别量子计算机可以有效解决的传统难题方面已经取得了很大进展,例如整数因式分解 [2]、模拟汉密尔顿动力学 [3-5] 和提取有关高维线性系统解的信息 [6]。量子计算领域的一个重要里程碑是首次证明量子设备可以执行具有同等资源的传统设备无法执行的计算任务。这一里程碑被称为“量子霸权”[7,8]、量子优势或量子性的证明[9],并引发了大量的理论提案和实验努力。然而,构建量子计算机仍然存在巨大的技术挑战,需要在架构设计、容错和控制方面取得理论和实验上的进展。各种量子优势提案以不同的方式解决了这些挑战,通过在实验演示的简易性、验证的简易性、安全保障和实际应用之间进行权衡。模拟量子模拟[10],即用一个多体量子系统模拟另一个多体量子系统,是一种展示量子优势的自然方法。通过构建具有可调(但可能非通用)汉密尔顿量的量子系统,可以模拟一个大的
Internet为用户之间的几种形式的相互作用提供了一个开放平台。鉴于网络的开放性质,由于不良行为者利用了毫无戒心的用户,因此存在信任问题。基于密码学的系统可以为实现信任提供正确的工具。有两个广泛的密码系统类别:对称键的加密和不对称键的加密[6]。对称键的加密和解密使用相同的密钥和一对密钥(私有和公共密钥)进行加密和解密,以进行非对称键的加密。身份验证的加密(AE)允许多方以保密和完整性交换消息。用户可以验证消息创建者的真实性,并防止可以侵蚀信任的消息伪造。当今的电子交易仅部分是由于安全身份验证的加密方案的发明。我们的工作使用对称键加密原始
在2023年,平均客户库存低于2022年的水平,但与流行前水平相比,客户库存水平保持较高。在消费者护理中,迹象表明,灾难已经在供应链中大部分工作,一年中销售量的改善缓慢。相比之下,工业需求较弱,全球影响力较弱的工业专业。同样,农业市场的客户继续在第二季度开始降低库存水平,而不是其他市场的销量。在制药中,我们对有价值的脂质技术迅速反应的能力使我们能够通过COVID-19大流行支持mRNA疫苗销售。不可避免地,随着Covid需求的下降,这导致了2023年的货物较低,造成了上一年的生命科学差异的一半以上,但我们仍然提供了2023年的6000万美元的Covid脂质(2022年(2022年:1.20亿美元))。COVID的经验确实使我们能够建立我们的技术,并为我们提供了宝贵的见解,随着客户药物管道的不断发展,促进了弹性的非循环销售。
参考:1 Cancer.net。肺癌 - 非小细胞:统计。 2024年3月访问。 2个国家癌症研究所。 SEER癌症统计概况:肺癌和支气管癌,2015年。 2024年3月访问。 3 Chen R等。 J Hemal Oncol。 2020; 13(1):58。 4 Majeed U等。 J hematol oncol。 2021; 14(1):108 5 Pircher A等。 抗癌研究。 2020; 70(5):287-294。 6 Globocan 2022。 欧洲。 访问2024年2月。 7国家癌症研究所。 seer癌统计事实:女性乳腺癌亚型。 2024年3月访问。 8 IQBAL N等。 mol biol int。 2014; 852748。 9 Lin M等。 J癌。 2020; 10.7150/jca.48944。 10 Lloyd M R等。 Clin Cancer Res。 2022; 28(5):821-30。 11 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。肺癌 - 非小细胞:统计。2024年3月访问。2个国家癌症研究所。 SEER癌症统计概况:肺癌和支气管癌,2015年。 2024年3月访问。 3 Chen R等。 J Hemal Oncol。 2020; 13(1):58。 4 Majeed U等。 J hematol oncol。 2021; 14(1):108 5 Pircher A等。 抗癌研究。 2020; 70(5):287-294。 6 Globocan 2022。 欧洲。 访问2024年2月。 7国家癌症研究所。 seer癌统计事实:女性乳腺癌亚型。 2024年3月访问。 8 IQBAL N等。 mol biol int。 2014; 852748。 9 Lin M等。 J癌。 2020; 10.7150/jca.48944。 10 Lloyd M R等。 Clin Cancer Res。 2022; 28(5):821-30。 11 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。2个国家癌症研究所。SEER癌症统计概况:肺癌和支气管癌,2015年。2024年3月访问。3 Chen R等。 J Hemal Oncol。 2020; 13(1):58。 4 Majeed U等。 J hematol oncol。 2021; 14(1):108 5 Pircher A等。 抗癌研究。 2020; 70(5):287-294。 6 Globocan 2022。 欧洲。 访问2024年2月。 7国家癌症研究所。 seer癌统计事实:女性乳腺癌亚型。 2024年3月访问。 8 IQBAL N等。 mol biol int。 2014; 852748。 9 Lin M等。 J癌。 2020; 10.7150/jca.48944。 10 Lloyd M R等。 Clin Cancer Res。 2022; 28(5):821-30。 11 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。3 Chen R等。J Hemal Oncol。2020; 13(1):58。4 Majeed U等。J hematol oncol。2021; 14(1):108 5 Pircher A等。抗癌研究。2020; 70(5):287-294。6 Globocan 2022。欧洲。访问2024年2月。7国家癌症研究所。 seer癌统计事实:女性乳腺癌亚型。 2024年3月访问。 8 IQBAL N等。 mol biol int。 2014; 852748。 9 Lin M等。 J癌。 2020; 10.7150/jca.48944。 10 Lloyd M R等。 Clin Cancer Res。 2022; 28(5):821-30。 11 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。7国家癌症研究所。seer癌统计事实:女性乳腺癌亚型。2024年3月访问。8 IQBAL N等。 mol biol int。 2014; 852748。 9 Lin M等。 J癌。 2020; 10.7150/jca.48944。 10 Lloyd M R等。 Clin Cancer Res。 2022; 28(5):821-30。 11 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。8 IQBAL N等。mol biol int。2014; 852748。9 Lin M等。 J癌。 2020; 10.7150/jca.48944。 10 Lloyd M R等。 Clin Cancer Res。 2022; 28(5):821-30。 11 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。9 Lin M等。J癌。 2020; 10.7150/jca.48944。 10 Lloyd M R等。 Clin Cancer Res。 2022; 28(5):821-30。 11 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。J癌。2020; 10.7150/jca.48944。10 Lloyd M R等。Clin Cancer Res。 2022; 28(5):821-30。 11 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。Clin Cancer Res。2022; 28(5):821-30。11 Goldenberg D等。 oncotarget。 2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。11 Goldenberg D等。oncotarget。2018; 9(48):28989-29006。 12 Mito R等。 Pathol int。 2020; 70(5):287-294。 13 Vidula N等。 乳腺癌治疗。 2022年8月; 194(3):569-575。 14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。2018; 9(48):28989-29006。12 Mito R等。Pathol int。2020; 70(5):287-294。13 Vidula N等。乳腺癌治疗。2022年8月; 194(3):569-575。14Rodríguez-Abreau D等。 ann onc。 2021 Jul; 32(7):881-895。 15美国癌症学会。 针对非小细胞肺癌的靶向药物治疗。 2024年3月访问。14Rodríguez-Abreau D等。ann onc。2021 Jul; 32(7):881-895。15美国癌症学会。针对非小细胞肺癌的靶向药物治疗。2024年3月访问。
摘要 EMulate Therapeutics, Inc. (EMTx) 开发了一种技术,可以将随时间变化的磁场以 WAV 文件的形式传送,这些磁场在极低到低频谱的无线电频率(DC 至 22 kHz)中发射,可用于调节痛觉。这些低功率场(~30-70 毫高斯 AC RMS)通过便携式轻型可穿戴设备 (Voyager) 传送。一家专门研究经过验证的大鼠疼痛模型的合同第三方动物研究组织 (ANS Biotech, SA) 独立于作者进行了研究。我们在此报告,一组信号在减少大鼠内脏痛、神经性疼痛和炎症疼痛模型的痛觉方面表现出统计学上显著的效果。此外,去除原始信号中 6 kHz 以上的频率可增强未修改信号的止痛效果。
注意:该报告是作为由美国政府机构赞助的工作的帐户准备的。美国政府,或其任何机构,或其任何雇员,其任何承包商,分包商或其雇员都不会对任何信息,设备,产品或程序所披露的任何信息,设备,产品或程序的准确性,完整性或有效性,表明其使用不属于私有权利的任何法律责任或责任。以此处参考任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或对其任何代理机构或其承包商或分包商的认可,建议或偏爱。本文所表达的观点和意见不一定陈述或反映美国政府,其任何机构或其承包商的观点和意见。
用户可以登录 Web 门户提交请求并跟踪报告的完成情况。公司帐户的发票和付款期限为每周或每月,付款期限为 30 天净额。ACH/EFT 是首选。如需开具账单,请将支票付给:收件人:应收账款 accountspayable@evoconbgc.com Evolution Consulting South, LLC 2940 University Parkway Sarasota, FL 34243 办公室:(941) 351-3200 营业时间:周一至周五,上午 8:00 至下午 4:00(美国东部时间)供应商自付费用供应商可以使用以下链接订购服务并使用信用卡付款。无需设置帐户。完成的报告将通过电子邮件发送给供应商。 *要在新的安全门户网站上注册,请单击此处:https://evoconscreening.com/DHP/register.php 要访问 2021 年 3 月 28 日之前注册的帐户,请单击此处:https://evolutionexcellence.com/Healthtrust/VP/HealthtrustVP1.php 请参阅下文有关套餐、单点服务和转嫁费用的完整说明。
尽管我们描述了图1,可以在几轮互动中提供证明。能够验证的计算问题补充了程序验证问题(PVP)。验证依赖于有用的冗余。我们需要对同一事物的两个描述,然后将一个描述与另一件事进行比较。程序验证确定我们已经正确地表达了一个给定的计算。我们通过将其与更高级别的规范进行比较来做出判断。在能够验证的计算问题中,给出了计算f。我们没有针对特定验证f。相反,我们想知道供者执行的执行是否与f的表达相一致。本最先进的报告中调查的文献提出了概率证明的理论。该领域的中心结果是概率可检查的证明定理(PCPT)。PCP有必要的结果。对于任何有效的数学断言,可以编码该断言的证明。PCP表明,我们可以使用此编码来检查断言的有效性,通过仅检查其他地方执行的证据中的恒定点。PCP的实际后果是在图中的协议中应用。1。考虑计算F,输入X和假定的输出y。有一种证明和随机检查方法可以保证以下内容。如果y = f(x)正确,则verifier将接受证明。图如果y̸= f(x),则Verifier几乎总是拒绝证明。证明可能需要在供供者和verifier之间进行相互作用。verifier拒绝此类证据的事实几乎总是编码绑定的错误。这意味着,在分析中有一定概率的情况下,Verifier将错误地将错误的答案视为正确的答案。1不会明确检查结果y。它的工作要少。如果要检查结果y = f(x),则需要重新进行计算。与问题陈述相矛盾,不是意图。因此,PCP允许随机验证者访问所谓的证明,以通过仅查询几个证明位来验证表单y = f(x)的输入语句。零知识PCP(ZK-PCP)增强了标准PCP。在零知识证明(ZK)中,一个方可以向另一方证明给定的语句是正确的。它可以做到这一点,同时避免提供任何其他信息,除了该陈述确实是正确的事实。有大量的文献专门用于概率可检查的证明协议。PCP理论的原始幼稚实现非常慢。从那时起,性能就已经有所改善。早期工具使用了计算的低级代表。这些低级协议实体的高级语言中的新工具编译程序。一些出版物报告了可能解决现实世界问题的有效验证者。对其他论文和书籍进行了调查,但被省略了。,但看来这些系统仅限于较小的执行,这主要是由于供款的费用。我们的最初印象是这些系统仅限于特殊用途的应用。本最先进的报告从文献中调查了128篇论文,其中包含4,000多页。所调查的论文绝大多数是数学上的。我们总结了构成可验证计算基础的主要概念。该报告包含两个主要部分。首先,较大的部分涵盖了理论基础,可用于可检查和零知识证明。第二部分包含对当前实践的描述,
摘要。这项工作的主要目标是构建既有承诺又是泄漏弹性的身份验证的加密(AE)。作为这种方法,我们将通用组成视为构建AE方案的众所周知的方法。Barwell等人已经分析了通用组成方案的泄漏弹性。(Asiacrypt'17),为了实施安全性,事实并非如此。我们通过对犯下安全性的通用组成范式进行单独分析来填补这一空白,从而给出正面和负面的结果:通过具体攻击,我们表明加密 - 然后是-MAC不承诺。此外,鉴于基本方案满足了我们为此目的引入的安全概念,因此我们证明了加密和MAC正在承诺。我们后来通过提供满足它们的计划来证明这些新观念。mac-然后将加入的限制更加困难,因为该标签未与密文旁边输出,因为它是针对其他两种组合方法完成的。尽管如此,我们对Mac-then-contrypt进行了详细的启发式分析,以实施安全性,这是确定的结果,这是未来工作的开放任务。我们的结果结合了一个事实,即仅加密-AC会产生泄漏 - 弹性的AE方案,表明人们无法获得通过通用组成进行投入和泄漏弹性的AE方案。作为构建承诺和泄漏弹性AE的第二种方法,我们开发了一种通用转换,该转换将任意AE方案变成实现这两种属性的方案。转换依赖于既有结合的键函数,即,很难找到导致相同输出的键输入对以及泄漏 - 弹性的伪数。