骨架是身体的支撑性和保护器官。随着个体的年龄,其骨组织会经历结构,细胞和分子变化,包括衰老细胞的积累。外囊囊泡(EV)在通过细胞分泌组的衰老中起着至关重要的作用,并已发现骨骼中与年龄相关的功能障碍诱导或加速与年龄相关的功能障碍,并通过循环系统进一步促进其他身体系统表型的衰老。但是,这些效果及其潜在机制的程度尚不清楚。因此,本文试图概述当前对来自骨骼的EV中与年龄相关的变化的理解。讨论了电动汽车在骨相关细胞和其他身体部位之间介导的通信中的作用,并突出了骨骼在整个体衰老过程中的重要性。最终,希望对电动汽车与衰老的机械性之间的关系有更清晰的了解,可以作为骨骼和其他系统中与年龄相关的退行性疾病的新治疗策略的基础。
代谢异常,例如糖尿病和肥胖症,会影响骨骼数量和/或骨骼质量。在这项工作中,我们在结构和组成方面表征了骨骼材料的特性,在新型的大鼠模型中,具有先天性瘦素受体(LEPR)缺乏症,严重的肥胖症和高血糖(2型糖尿病样的疾病)。股骨和来自20周龄的雄性大鼠的钙瓦里亚(顶部区域)被检查以探测由内软骨内和膜内骨化形成的骨骼。与健康对照相比,当通过微型计算的X射线断层扫描(Micro-CT)分析时,LEPR缺陷的动物在股骨微体系结构和钙形态学上显示出显着改变。特别是,骨体积减小的股骨较短,结合较薄的顶骨和较短的矢状缝合线,指向LEPR缺陷啮齿动物的骨骼开发延迟。另一方面,LEPR缺陷的动物和健康的对照表现出类似的骨基质组成,通过微观CT进行了组织矿物质密度,通过微CT的组织矿物质密度评估,通过数量的反向散射电子成像矿化程度,以及从拉曼低估图像中突破的各种指标。一些特定的微观结构特征,即股骨中的矿化软骨岛和顶骨的高矿化区域,在两组中也显示出可比的分布和特征。总体而言,尽管骨基质成分正常,但LEPR缺陷动物的骨微结构改变表明骨质质量受损。延迟的发育也与具有先兆LEP/LEPR缺乏症的人类的观察者一致,这使该动物模型成为转化研究的合适候选者。
骨折的愈合可能会变得异常,并导致骨折,进而对患者健康产生负面影响。了解为什么骨骼通常无法治愈的原因会使我们能够对患者的生活产生积极影响。虽然我们在裂缝修复的啮齿动物模型上拥有大量的分子数据,但人类与人类不一样。因此,仍然缺乏有关正常生理修复和骨无法分子差异的信息。这项研究旨在通过比较生理裂缝愈伤组织与两种不同的骨不连类型的差异表达的基因(DEG),即肥厚(HNU)和贫营养(ONU)之间的差异表达基因(DEG)来解决这一差距。RNA测序数据在每个样品中揭示了约18,000个基因。使用生理愈伤组织作为对照和肉骨样品作为实验组,生物信息学分析分别确定了HNU和ONU的67和81统计学意义的DEG。在HNU的67摄氏度中分别向上和下调。同样,在ONU的81度中,48和33分别向上和下调。此外,我们还确定了两个骨不连的样品之间的共同基因。 8(10.8%)上调,12(22.2%)下调。我们进一步确定了许多生物学过程,并具有几种具有统计学意义的生物过程。其中一些与肌肉有关,并且在两个骨不连的样品之间很常见。这项研究代表了了解人类肉瘤生物学中发生的全球分子事件的首次全面尝试。通过进一步的研究,我们也许可以破译可能针对治疗靶向的人骨骨折的异常愈合的新分子途径。
脑衍生的神经营养因子(BDNF)是一种神经营养蛋白,在中枢神经系统和周围组织中表达,受到GSα /CAMP途径的调节。在骨骼中,它调节成骨,并刺激骨化肿瘤(如多发性骨髓瘤)中的RANKL分泌和破骨细胞形成。纤维发育不良(FD)是由GSα基因的功能收益突变引起的罕见的骨骼遗传疾病,其中RANKL依赖性增强的骨吸收是骨骼脆弱性和临床发病率的主要原因。我们观察到BDNF转录本在人类FD病变中表达。具体而言,对从FD患者获得的活检进行的免疫定位研究揭示了成骨细胞中BDNF的表达,并且在纤维组织内的纺锤形细胞中的表现较低。因此,我们假设BDNF可以通过刺激RANKL分泌和骨吸收来在FD的发病机理中发挥作用。为了测试这种疗法,我们使用了人类疾病的EF1α-GSαR201C小鼠模型(FD小鼠)。Western印迹分析显示,与WT小鼠相比,FD小鼠的骨段中BDNF的表达更高,而小鼠FD病变中的免疫标记模式与在人FD中观察到的相似。用抗BDNF的单克隆抗体对FD小鼠进行处理,可减少纤维组织,以及股骨病变内的破骨细胞和骨爆炸的数量。这些结果揭示了BDNF是FD发病机理的新玩家,并且可以在FD骨骼病变中滋养破骨细胞生成的潜在分子机制。他们还建议BDNF抑制作用可能是减少FD中异常骨骼重塑的一种新方法。
弥漫性肺骨化(DPO)是一种不寻常的条件,其特征是肺实质的化生骨化。即使是在正常肺(特发性DPO)中,它也已在不同的情况下进行了描述。但是,它通常会与先前存在的肺,心脏或代谢性疾病的背景相比[2,3]。dpo没有特定的临床特征,通常是手术肺活检或尸检期间的一种切可能的发现。DPO的两种不同亚型基于其组织病理学模式,即结节性和结构透明[5,6]。结节型在肺泡空间内呈现圆形的,钙质的结节,并且由于心脏故障或二尖瓣疾病而导致肺部充血的患者更常见。相反,树突形变体的特征是由肺间隔引起的分支钙化,通常包含骨髓元素,并且更常见于肺纤维化。DPO的发病机理尚不清楚。但是,外部触发因素和遗传易感性都可能涉及[7]。这种异常最有可能是由于肺组织中钙和磷酸盐的沉淀,但也可能被解释为肺成纤维细胞和巨噬细胞对慢性肺损伤的转化反应,可以在局部过度或酸性中分化为质量spese spese spese spese spesess [8]。一些作者已经指出,DPO可能与低水平的慢性胃酸抽吸有关[8]。在某些情况下,它可以发展为肺纤维化,呼吸道或心脏衰竭[6,9]。特发性DPO患者可能会无症状多年,但通常在第三十年至第四十年之间会出现呼吸道症状,通常是非生产性咳嗽,呼吸困难,胸痛和嗜酸症。我们提出了在无症状患者中诊断出的特发性DPO病例。我们试图确定条件的纵向演变,还应用了计算机辅助分析进行钙含量定量,并且随着时间的推移,我们显示出症状和放射学的进展之间存在很大的断开连接。
XXXII HF 8 26,26B,27 Bishop Hannes Finnsson(B.122-12Bl。160:sæbls。xxxiiÞó9 28,29 Thorunn olafsdottir Stephensen,F 22年P. 123-12Bl。 160:mbls。 165:H P. xxxiii oh 124:Óbls。 A.他们躺在xxxiv S-1 的先前骨架上 124:在BLS中。 Krónur7个孩子和两个XXXVII 31、32、33 XXXXIX 34、35、36 Bishop John Bishop John 124-12Bls。 161:看到。 Xlii FJ 6 38 Bishop Finn Jonsson(B. 126-12Bls。 161:b p。 165:头发:长度5 sm,颜色F(Lightwowl Haired),灰色蓝色Xliii Ggy 7 39,40 Gudrid Gisladottir,Finn的Joca的妻子59年。 127-12Bl。 161:mbls。 128:在BLS上。 XLV FJB 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。 161:儿童的骨头Inf1,可能是Inf.1a。 XLVI FJC 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。xxxiiÞó9 28,29 Thorunn olafsdottir Stephensen,F 22年P. 123-12Bl。 160:mbls。 165:H P. xxxiii oh 124:Óbls。 A.他们躺在xxxiv S-1 的先前骨架上 124:在BLS中。 Krónur7个孩子和两个XXXVII 31、32、33 XXXXIX 34、35、36 Bishop John Bishop John 124-12Bls。 161:看到。 Xlii FJ 6 38 Bishop Finn Jonsson(B. 126-12Bls。 161:b p。 165:头发:长度5 sm,颜色F(Lightwowl Haired),灰色蓝色Xliii Ggy 7 39,40 Gudrid Gisladottir,Finn的Joca的妻子59年。 127-12Bl。 161:mbls。 128:在BLS上。 XLV FJB 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。 161:儿童的骨头Inf1,可能是Inf.1a。 XLVI FJC 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。xxxiiÞó9 28,29 Thorunn olafsdottir Stephensen,F 22年P.123-12Bl。160:mbls。165:H P.xxxiii oh124:Óbls。A.他们躺在xxxiv S-1 的先前骨架上 124:在BLS中。 Krónur7个孩子和两个XXXVII 31、32、33 XXXXIX 34、35、36 Bishop John Bishop John 124-12Bls。 161:看到。 Xlii FJ 6 38 Bishop Finn Jonsson(B. 126-12Bls。 161:b p。 165:头发:长度5 sm,颜色F(Lightwowl Haired),灰色蓝色Xliii Ggy 7 39,40 Gudrid Gisladottir,Finn的Joca的妻子59年。 127-12Bl。 161:mbls。 128:在BLS上。 XLV FJB 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。 161:儿童的骨头Inf1,可能是Inf.1a。 XLVI FJC 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。A.他们躺在xxxiv S-1 的先前骨架上 124:在BLS中。 Krónur7个孩子和两个XXXVII 31、32、33 XXXXIX 34、35、36 Bishop John Bishop John 124-12Bls。 161:看到。 Xlii FJ 6 38 Bishop Finn Jonsson(B. 126-12Bls。 161:b p。 165:头发:长度5 sm,颜色F(Lightwowl Haired),灰色蓝色Xliii Ggy 7 39,40 Gudrid Gisladottir,Finn的Joca的妻子59年。 127-12Bl。 161:mbls。 128:在BLS上。 XLV FJB 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。 161:儿童的骨头Inf1,可能是Inf.1a。 XLVI FJC 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。A.他们躺在xxxiv S-1124:在BLS中。Krónur7个孩子和两个XXXVII 31、32、33 XXXXIX 34、35、36 Bishop John Bishop John 124-12Bls。 161:看到。 Xlii FJ 6 38 Bishop Finn Jonsson(B. 126-12Bls。 161:b p。 165:头发:长度5 sm,颜色F(Lightwowl Haired),灰色蓝色Xliii Ggy 7 39,40 Gudrid Gisladottir,Finn的Joca的妻子59年。 127-12Bl。 161:mbls。 128:在BLS上。 XLV FJB 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。 161:儿童的骨头Inf1,可能是Inf.1a。 XLVI FJC 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。Krónur7个孩子和两个XXXVII 31、32、33 XXXXIX 34、35、36 Bishop John Bishop John 124-12Bls。 161:看到。 Xlii FJ 6 38 Bishop Finn Jonsson(B. 126-12Bls。 161:b p。 165:头发:长度5 sm,颜色F(Lightwowl Haired),灰色蓝色Xliii Ggy 7 39,40 Gudrid Gisladottir,Finn的Joca的妻子59年。 127-12Bl。 161:mbls。 128:在BLS上。 XLV FJB 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。 161:儿童的骨头Inf1,可能是Inf.1a。 XLVI FJC 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。Krónur7个孩子和两个XXXVII 31、32、33 XXXXIX 34、35、36 Bishop John Bishop John124-12Bls。161:看到。Xlii FJ 6 38 Bishop Finn Jonsson(B. 126-12Bls。 161:b p。 165:头发:长度5 sm,颜色F(Lightwowl Haired),灰色蓝色Xliii Ggy 7 39,40 Gudrid Gisladottir,Finn的Joca的妻子59年。 127-12Bl。 161:mbls。 128:在BLS上。 XLV FJB 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。 161:儿童的骨头Inf1,可能是Inf.1a。 XLVI FJC 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。Xlii FJ 6 38 Bishop Finn Jonsson(B. 126-12Bls。 161:b p。 165:头发:长度5 sm,颜色F(Lightwowl Haired),灰色蓝色Xliii Ggy 7 39,40 Gudrid Gisladottir,Finn的Joca的妻子59年。 127-12Bl。 161:mbls。 128:在BLS上。 XLV FJB 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。 161:儿童的骨头Inf1,可能是Inf.1a。 XLVI FJC 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。Xlii FJ 6 38 Bishop Finn Jonsson(B.126-12Bls。161:b p。165:头发:长度5 sm,颜色F(Lightwowl Haired),灰色蓝色Xliii Ggy 7 39,40 Gudrid Gisladottir,Finn的Joca的妻子59年。127-12Bl。161:mbls。128:在BLS上。 XLV FJB 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。 161:儿童的骨头Inf1,可能是Inf.1a。 XLVI FJC 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。128:在BLS上。 XLV FJB 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。 161:儿童的骨头Inf1,可能是Inf.1a。 XLVI FJC 7青年。 一个年幼的孩子的不自然孙子。 128:在BLS上。128:在BLS上。XLV FJB 7青年。一个年幼的孩子的不自然孙子。128:在BLS上。161:儿童的骨头Inf1,可能是Inf.1a。XLVI FJC 7青年。一个年幼的孩子的不自然孙子。128:在BLS上。161:婴儿的微型,INF1,可能是Inf.1a。
前列腺癌(PCA)在发达国家中越来越普遍。局部PCA存在有效的治疗选择,但是转移性PCA的治疗选择较少,并且患者的生存率较短。PCA和骨骼健康紧密地交织在一起,因为PCA通常转移到骨架上。由于雄激素受体信号传导驱动PCA生长,因此后遗症降低骨骼强度构成了晚期PCA治疗的基础。骨骼重塑的体内平衡过程 - 由骨建造成骨细胞,骨质骨细胞和调节性骨细胞的一致作用产生。驱动骨骼发育和稳态的机制,例如区域缺氧或基质填充的生长因子,可以被骨转移性PCA征服。以这种方式,维持骨骼的生物学被整合到PCA在骨中生长和存活的自适应机制。由于骨骼生物学和癌症生物学的纠缠性质,骨骼转移性PCA很难进行研究。在此,我们从起源,表现和临床治疗中调查PCA到PCA转移对骨的骨组成以及结构以及分子介质。我们的目的是快速却有效地减少了跨多个学科的团队科学障碍,该学科的重点是PCA和转移性骨病。我们还介绍了组织工程的概念,作为一种新颖的观点,以建模,捕获和研究复杂的癌症微环境相互作用。
质量控制; QQQ,三倍四倍; q-tof,四杆飞行时间; RF,随机森林; RFLP,终末限制片段长度多态性; RMSE,根平方错误; RNA-seq,RNA测序; SBL,结扎测序; SBS,通过合成测序; SCD,心脏猝死; SGD,随机梯度下降; SIDS,婴儿死亡综合症; Silac,氨基酸在细胞培养中稳定的异位标记; Sirm,稳定的同位素分辨代谢组学; SMRT,单分子,实时; SNP,单核苷酸多态性; SQT,简短的QT综合征;德克萨斯州东南部的Stafs应用法医学; STLFR,单管长片段读取; str,短串联重复; SVM,支持向量机; SVM,支持向量机; tadr,胸主动脉
研究表明,从孩子到5岁的孩子喝的东西可能会对他们的健康产生重大影响。美国儿科学院的专家,营养与饮食学院,美国儿科牙科学会和美国心脏协会的专家建议牛奶和水作为1-5岁儿童的饮料。由于营养素含量的差异,生物利用度的有限证据以及对饮食质量和健康结果的影响有限,因此不建议使用18种基于植物的替代品。如果孩子对奶牛过敏或适应素食主义者或某些素食饮食偏好,则例外将是不加糖的,强化的豆浆。