5 Invivosciences,Inc。,美国威斯康星州麦迪逊,对应作者:tetsuro@invivosciences.com,farid.alisafaei@njit.edu摘要。心肌细胞不断经历调节其收缩行为并有助于整体心脏功能的机械刺激。尽管机械转导的重要性在心脏生理学中,但心肌细胞整合外部机械提示的机制,例如拉伸和环境僵硬,仍然知之甚少。在这项研究中,我们提出了一个合并的理论和实验框架,以研究应变诱导的细胞骨架僵硬如何调节心肌细胞的收缩性和力产生。我们的研究阐明了调节组织中机械张力心肌细胞经验的经验(无论是通过调节环境僵硬,外部拉伸还是心脏成纤维细胞激活)可以有效地调节其收缩力,并通过细胞骨架菌株僵硬在这种机械转移反应中起着核心作用。
骨肉瘤细胞的去分化导致预后不良。我们计划识别与细胞去分化有关的关键分子,并探索它们如何促进骨肉瘤细胞的肺转移。我们进行了一个球体形成测定法,并确认可以将球体细胞重新分化为特定培养基中的成骨细胞,脂肪细胞和软骨细胞,并且在细胞表面检测到了细胞表面,这表明球体样细胞是透射细胞的。血小板传播1(THBS1)和ITGA被确定为去分化的关键分子,而THBS1表达较高的骨肉瘤患者的预后较高。thbs1在去分化的早期阶段促进了itga1和itga6在细胞膜上的积累,从而增加了细胞质中FAK,RASGRF1和MLC2的磷酸化,并促进细胞骨架重塑。我们的结果表明,THBS1通过促进细胞骨架重塑来促进细胞去分化和肺转移,并且ITGA1和ITGA6在介导细胞外向至细胞内信号中起着重要作用。这种介导作用主要发生在去分化的早期阶段。
将大脑视为由简单神经元组成的复杂计算机无法解释意识或认知的基本特征。没有突触的单细胞生物利用其细胞骨架微管执行有目的的智能功能。需要一个新的范式来将大脑视为一个尺度不变的层次结构,既从神经元水平向上延伸到越来越大的神经元网络,也向下、向内延伸到神经元内细胞骨架微管中更深、更快的量子和经典过程。证据表明,微管中存在在太赫兹、千兆赫兹、兆赫兹、千赫兹和赫兹频率范围内重复的自相似传导共振模式。这些传导共振显然起源于太赫兹量子偶极振荡和每个微管蛋白(微管的组成亚基和大脑中最丰富的蛋白质)中色氨酸、苯丙氨酸和酪氨酸的芳香族氨基酸环的π电子共振云之间的光学相互作用。现在,来自培养的神经元网络的证据还表明,树突状体细胞微管中的千兆赫和兆赫振荡调节远端轴突分支的特定放电,从而因果地调节膜和突触活动。大脑应该被视为一个尺度不变的层次结构,其中量子和经典过程对意识和认知至关重要,这些过程源自神经元内的微管。
无溶剂合成和加工金属有机骨架 (MOF) 对于将这些材料应用于应用技术至关重要。MOF 薄膜的气相合成特别适合此类应用,但与传统的基于溶液的方法相比具有挑战性。因此,推进和扩大 MOF 薄膜的气相合成势在必行。结晶对苯二甲酸铜 MOF 薄膜通过原子和分子层沉积 (ALD/MLD) 在不同种类的基底上以气相生长。从先驱工作扩展而来,首次清楚地证明了 3D 相的形成,并揭示了该工艺对多种基底的适应性。在 ALD/MLD 工艺的早期阶段观察到定向膜生长,导致表面上取向的 MOF 晶体,当随着 ALD/MLD 循环次数的增加而进行各向同性生长时。值得注意的是,这项研究主要展示了使用具有晶格匹配拓扑的 DMOF-1 单晶作为起始表面,在气相中实现异质外延生长。这种方法为在气相中开发 MOF 超晶格材料提供了一种有吸引力的途径。
重组腺相关病毒(RAAV)是用于传递遗传信息的最深入研究和最广泛使用的载体之一。但是,将遗传货物向受体细胞有效地转移需要高矢量剂量。质粒DNA(pDNA)是用于制造Raav的关键原料。可以生产的病毒滴度取决于辅助,包装和转移质粒转染的细胞数量以及其生物学活性。因此,对优化质粒的高级疗法需求的开发和应用表现出较高的生物学活性,可以以高质量和数量生产。这些原材料的可用性和负担能力反过来要求高性能生产过程,这些过程的特征是高产品滴度,质粒DNA纯度和可伸缩性。这些特征受到靶质粒的特定序列的影响,尤其是那些对RAAV功能至关重要的序列。Wacker开发了一个专有的饲料批次工艺,该过程最佳地支持了质膜菌株的生长,并允许最佳的质粒复制。此过程允许在高特异性滴度和高纯度下进行可扩展的质粒DNA(包括关键的RAAV制造原材料)的可扩展生产和隔离。使用此过程,我们开发了特定的DNA序列,从而进一步提高了靶质粒的生产率,从而降低了制造成本。并行,我们筛选替代质粒结构,以提高其转染效率和包装细胞系中的生物学活性。结合了由此产生的技术,我们开发了专有质粒,可以进一步促进RAAV制造。具有其生产力,灵活性和可扩展性,Plasmitec®制造平台提供了高质量且负担得起的原材料,因此是开发和应用高级疗法的宝贵促进者。
摘要:柔性金属有机骨架 (MOF) 在外界刺激下会发生可逆的结构转变。某些 MOF 的一个有趣特性是它们能够响应特定客体而弯曲,从而实现选择性分离。在这里,我们介绍了 MUF-15-OMe ([Co 6 (μ 3 -OH) 2 (ipa-OMe) 5 (H 2 O) 4 ]),它是 MUF-15 的一种变体,由通过 5-甲氧基间苯二甲酸酯 (ipa-OMe) 配体连接的六核钴 (II) 簇组成。MUF-15 本身具有间苯二甲酸酯连接基,在吸收常见气体时不灵活。另一方面,MUF-15-OMe 在压力低于 1 bar 时会弯曲 CO 2 和 C2 烃类等气体,这由其气体吸附等温线中的不同步骤揭示。计算分析表明,潜在机制涉及骨架连接体中羧基之一的部分分离。通过在多元骨架中用间苯二甲酸酯配体替换部分 ipa-OMe,可以调节诱导骨架动力学所需的气压。MUF-15-OMe 的弯曲为吸附特定的额外气体分子打开了空间。这增强了 CO 2 和 N 2 的分离,并使得通过量子筛分能够区分 H 2 和 D 2。通过清楚地说明灵活性如何区分气体混合物,这项研究为使用动态 MOF 进行具有挑战性的分离奠定了基础。
图 1:(a) SWC 文件的说明性示例(不是真实细胞)。从左到右,各列分别表示节点索引、神经元区室类型、x、y、z 坐标、半径和父节点索引。例如,第二个节点表示位于 [0, 0, 8] 处半径为 2 µm 的顶端树突(类型 4)部分。它连接到其父节点(第一个节点)。如果父索引为 -1,则当前节点为根节点。(b) (a) 中 SWC 文件定义的神经元骨架的可视化表示。红色 ⊗ 符号表示体细胞节点,神经突节点用红色 + 表示。长度为 l 1 , . . . , l 4 的蓝线绘制了神经元骨架。虚线以 3D 形式说明了神经元的形态。(c) 可用于连接两个连续节点的圆锥
在这项研究中,我们对十项可公开可用的基准测试进行了全面的荟萃分析,该测试评估了使用RNA-SEQ数据评估基因融合检测工具的性能。我们的分析集中在关键性能指标上,包括灵敏度,精度和F1分数。我们评估了工具在不同数据集中的性能。我们检查了数据集特征的影响,例如样本类型(真实或模拟)和读取长度,以及结果对结果的其他样本和测序参数。除了评估绩效外,我们还分析了基准测试的组织和设计,突出了诸如数据集的清晰描述,详细的仪器参数和透明方法。但是,我们还确定了常见的陷阱,包括不足的可重复性信息,数据集的多样性和缺乏广泛接受的黄金标准数据集。这些限制使得很难始终如一地评估工具并跨基准进行比较。通过综合这些发现,我们为未来的基准项目提出了建议,强调了标准化的需求,提高透明度和健壮真理集的发展。本研究旨在帮助社区创建更可靠和可重复的基准测试,最终加速了用于临床和研究应用的基因融合检测工具的开发和评估。
膜技术被视为一种环保且可持续的方法,在解决高能耗丙烯/丙烷分离过程中产生的大量能源损失方面具有巨大潜力。寻找用于这种重要分离的分子筛膜引起了极大的兴趣。在这里,一种氟化金属有机骨架 (MOF) 材料被称为 KAUST-7(KAUST:阿卜杜拉国王科技大学),具有明确的窄 1D 通道,可以根据尺寸筛分机制有效区分丙烯和丙烷,成功地被掺入聚酰亚胺基质中以制造分子筛混合基质膜 (MMM)。值得注意的是,KAUST-7 纳米粒子的表面功能化具有卡宾部分,可提供制造分子筛 MMM 所需的界面相容性,同时聚合物-填料界面的非选择性缺陷最少。具有高 MOF 负载(高达 45 wt.%)的最佳膜显示出 ≈ 95 barrer 的丙烯渗透率和 ≈ 20 的混合丙烯/丙烷选择性,远远超过了最先进的上限。此外,所得膜在实际条件下表现出坚固的结构稳定性,包括高压(高达 8 bar)和高温(高达 100°C)。观察到的出色性能证明了表面工程对于制备和合理部署用于工业应用的高性能 MMM 的重要性。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2025年1月19日发布。 https://doi.org/10.1101/2025.01.15.633177 doi:biorxiv preprint