目的:评估用以下3种治疗方式治疗的食管癌患者的辐射诱导淋巴细胞耗竭的可能差异:强度调节放射治疗(IMRT),被动散射质子治疗(PSPT)和强度调节的蛋白质治疗(IMPT)。方法和材料:我们使用了2个预测模型来估计基于剂量分布的淋巴细胞耗竭。模型我使用了淋巴细胞存活与体素剂量之间的分段线性关系。Model II假定淋巴细胞作为总剂量的函数呈指数耗尽。模型可以使用每周的绝对淋巴细胞计数在整个治疗过程中收集的测量。我们随机选择了45例在我们机构中用IMRT,PSPT或IMPT治疗的食管癌患者(每种模式15),以证明这两种模型的适应性。在多种模态的计算机模拟中纳入了已接受PSPT的10例食管癌患者。使用我们的每种模式的我们的实践标准制定了一个IMRT和一个IMPT计划,作为每个患者现有PSPT计划的竞争计划。我们拟合了用于治疗的PSPT计划的模型,并预测了IMRT和IMPT计划的绝对淋巴细胞计数。结果:对每个患者模式组的模型验证表明,在模态和模型中,测得的和预测的绝对淋巴细胞计数之间的良好一致性,其平均误差为0.003至0.023。结论:质子计划在治疗课程后的预测风险低于光子计划。在对10名PSPT患者的IMRT和IMPT的仿真研究中,预测的绝对淋巴细胞计数(ALC)NADIRS分别在IMRT,PSPT和IMPT治疗后,使用Model I和0.14、0.22,以及0.14、0.22,以及0.22 k/ l L L L LINES II使用模型。此外,IMPT计划在预测的淋巴细胞保存方面优于PSPT。
摘要 骨细胞在骨骼中起着指挥官的核心作用,可以调节骨重塑过程。虽然已知骨细胞是从成骨细胞分化而来的,但对骨细胞分化机制的了解仍然很少。本研究的目的是利用三维 (3D) 细胞培养技术阐明骨细胞的分化能力。我们首先通过调整圆底孔中传代培养细胞的数量,制作了一个由小鼠成骨细胞样细胞重建的自组织球体。与传统的二维 (2D) 单层模型相比,3D 球体在 2 天内在体外表现出更高的骨细胞基因表达。作为尺寸依赖性实验的结果,成骨细胞样细胞可能存在适当的细胞-细胞和细胞-ECM 相互作用,以 3D 球体培养的形式诱导骨细胞生成。此外,本模型表明,在经过 7 天的长时间培养后,球体仍能发挥出长期的骨细胞分化能力。总之,我们描述了由成骨细胞样细胞重建的自组织骨细胞球体,并进一步提出了该球体作为一种新的体外组织工程骨细胞模型的潜在应用。
用户必须在使用前确保产品在其应用中的适用性。产品仅符合该和其他相关HIMEDIA™出版物中包含的信息。本出版物中包含的信息基于我们的研发工作,据我们所知,真实而准确。Himedia™实验室Pvt Ltd保留随时更改规格和信息的权利。产品不是用于人类或动物诊断或治疗用途的产品,而是用于实验室,研究或进一步制造的使用,除非另有说明。本文包含的陈述不应被视为任何形式的保证,明示或暗示,也不应对侵犯任何专利的责任承担任何责任。
摘要 与年龄相关的肌肉骨骼疾病(包括骨质疏松症)很常见且与长期发病有关,进而严重影响医疗保健系统的可持续性。因此,迫切需要开发可靠的疾病和药物筛选临床前模型,以便以个性化的方式验证新药,而无需进行体内检测。在骨组织中,虽然骨细胞 (Oc) 网络是一个公认的治疗靶点,但目前的体外临床前模型无法模拟其生理相关且高度复杂的结构。为此,需要多种特征,包括拟骨细胞外基质、动态灌注和机械提示(例如剪切应力)以及 Oc 的三维 (3D) 培养。我们在此首次描述了一种基于 96 个微型芯片的高通量微流控平台,用于大规模临床前评估以预测药物功效。我们通过开发和注射一种高硬度的类骨 3D 基质,对一种可实时可视化并配备多芯片的商业微流体装置进行了生物工程改造,这种基质由富含胶原蛋白的天然水凝胶与羟基磷灰石纳米晶体的混合物制成。微通道中充满了拟骨基质和 Oc,受到被动灌注和剪切应力。我们使用扫描电子显微镜对材料进行初步表征。将材料注入微通道后,使用共聚焦显微镜和荧光微珠检测体积变化和水凝胶内细胞大小物体的分布。通过测量细胞活力、评估表型标志物(连接蛋白 43、整合素 α V/CD51、硬化蛋白)、树突量化和对合成代谢药物的反应性来监测 Oc 的 3D 树突网络的形成。该平台有望加速旨在调节骨细胞生存和功能的新药开发。
骨骼是一个分泌器官,某些骨质疏松疗法的目的是最大化骨基质输出。NMP4编码一种新的转录因子,该因子调节骨细胞分泌是其功能库的一部分。NMP4的丧失通过增加骨基质的产生和递送来增强骨对骨代谢疗法的反应。NMP4具有缩放因子的特征,这些特征是影响数百个基因表达以控制蛋白质组分配以建立分泌细胞基础设施和容量的转录因子。nmp4在所有组织中表达,尽管该基因的全球损失没有导致明显的基线表型,但NMP4的缺失对某些应激源质疑的小鼠具有广泛的组织效应。除了增强对骨质疏松疗法的反应外,NMP4缺陷小鼠对高脂饮食诱导的体重增加和胰岛素抵抗的敏感性较小,还显示出疾病的严重程度,以应对流感病毒(IAV)的感染,并且抵抗某些形式的类风湿性疾病的发展。在这篇综述中,我们介绍了对骨骼对骨代谢的NMP4调节基础机制的当前理解,我们讨论了这种独特的基因
抽象目标的代谢变化至关重要地参与破骨细胞的发育,并可能导致类风湿关节炎(RA)的骨骼降解。已知酶辅酶脱羧酶1(ACOD1)将单核细胞衍生的巨噬细胞的细胞功能与其代谢状态联系起来。作为源自单核细胞谱系的破骨细胞,我们假设ACOD1及其代谢产物在破骨细胞分化和关节炎相关的骨质流失中的作用。方法是在人类外周血单核细胞(PBMC)中测量了RA和健康对照患者的质谱法。在体外用Itaconate衍生物4-辛基 - 乙酸盐(4-OI)处理人和鼠骨细胞。使用K/BXN血清诱导的关节炎和人TNF转基因(HTNFTG)小鼠,我们检查了ACOD1缺乏和4-OI治疗对小鼠骨侵蚀的影响。场景和细胞外通量分析用于评估破骨细胞和破骨细胞祖细胞的代谢活性。ACOD1依赖性和依赖性蛋白酶依赖性变化。CRISPR/CAS9基因编辑用于研究低氧诱导因子(HIF)-1α在ACOD1介导的破骨细胞发育调节中的作用。RA患者的PBMC中的Itaconate水平与疾病活性成反比。ACOD1-缺陷小鼠在实验性关节炎中表现出增加的破骨细胞数量和骨侵蚀,而4-OI治疗减轻了体内炎症性骨质损失,并抑制了体外人和鼠类骨细胞分化。从机械上讲,ACOD1通过抑制琥珀酸酯脱氢酶的活性氧和HIF1α介导的有氧糖糖溶解的诱导来抑制破骨细胞分化。结论ACOD1和ITACONATE是炎性关节炎中破骨细胞分化和骨质流失的关键调节剂。
抽象目标的代谢变化至关重要地参与破骨细胞的发育,并可能导致类风湿关节炎(RA)的骨骼降解。已知酶辅酶脱羧酶1(ACOD1)将单核细胞衍生的巨噬细胞的细胞功能与其代谢状态联系起来。作为源自单核细胞谱系的破骨细胞,我们假设ACOD1及其代谢产物在破骨细胞分化和关节炎相关的骨质流失中的作用。方法是在人类外周血单核细胞(PBMC)中测量了RA和健康对照患者的质谱法。在体外用Itaconate衍生物4-辛基 - 乙酸盐(4-OI)处理人和鼠骨细胞。使用K/BXN血清诱导的关节炎和人TNF转基因(HTNFTG)小鼠,我们检查了ACOD1缺乏和4-OI治疗对小鼠骨侵蚀的影响。场景和细胞外通量分析用于评估破骨细胞和破骨细胞祖细胞的代谢活性。ACOD1依赖性和依赖性蛋白酶依赖性变化。CRISPR/CAS9基因编辑用于研究低氧诱导因子(HIF)-1α在ACOD1介导的破骨细胞发育调节中的作用。RA患者的PBMC中的Itaconate水平与疾病活性成反比。ACOD1-缺陷小鼠在实验性关节炎中表现出增加的破骨细胞数量和骨侵蚀,而4-OI治疗减轻了体内炎症性骨质损失,并抑制了体外人和鼠类骨细胞分化。从机械上讲,ACOD1通过抑制琥珀酸酯脱氢酶的活性氧和HIF1α介导的有氧糖糖溶解的诱导来抑制破骨细胞分化。结论ACOD1和ITACONATE是炎性关节炎中破骨细胞分化和骨质流失的关键调节剂。
骨细胞在低氧环境中起作用,以控制骨形成的关键步骤。FGF23是一种临界磷酸盐调节激素,受到急性和慢性疾病中低氧/铁的刺激,但是指向此过程的分子机制尚不清楚。我们的目标是确定由氧气/铁利用变化驱动的FGF23产生的骨细胞因子。低氧诱导因子 - 丙酰羟化酶抑制剂(HIF-PHI)稳定HIF转录因子,正常小鼠以及骨细胞样细胞中的FGF23增加;在有条件骨细胞FGF23缺失的小鼠中,抑制了循环的IFGF23。诱导型MSC细胞系(“ MPC2”)接受了FG-4592治疗和AtacSeq/RNASEQ,并证明了分化的骨细胞显着提高了HIF基因组可及性与祖细胞的基因组可及性。整合基因组学还显示,羟化羟化酶EGLN1(PHD2)染色质访问性和表达增加,与骨细胞分化呈正相关。在患有慢性肾脏疾病(CKD)的小鼠中,PHD1-3酶被抑制,与该模型中的FGF23上调一致。体内骨细胞的有条件损失导致FGF23上调,这与我们的发现一致,即缺乏PHD2(CRISPR PHD2-KO细胞)组成型激活的FGF23的MPC2细胞系被HIF1α封锁了。在体外,PHD2-KO细胞失去了铁介导的FGF23的抑制,并且该活性未被PHD1或-3弥补。。 总的来说,骨细胞在分化过程中适应氧/铁感应,并且对生物利用铁直接敏感。在体外,PHD2-KO细胞失去了铁介导的FGF23的抑制,并且该活性未被PHD1或-3弥补。总的来说,骨细胞在分化过程中适应氧/铁感应,并且对生物利用铁直接敏感。此外,PHD2是骨细胞FGF23产生的关键介体,因此我们的集体研究可能为涉及涉及氧气/铁感应障碍的骨骼疾病提供新的治疗靶标。
摘要 目的 虽然确切的人类前体细胞尚未确定,但循环中的髓系前体细胞负责出生后破骨细胞 (OC) 的分化和骨骼健康。增强的破骨细胞生成导致类风湿性关节炎 (RA) 中的关节破坏,而肿瘤坏死因子 (TNF) 是一种众所周知的促破骨细胞生成因子。在此,我们研究了核因子 κ-Β 配体的受体激活剂 (RANK-L) 与 TNF 之间的相互作用,RANK-L 对髓系前体的融合和 OC 的正常发育必不可少,而 TNF 则指导来自人外周血的不同前 OC 群体的分化。方法 流式细胞术细胞分选和分析用于评估髓系群体分化为 OC 的潜力。转录组学、表观遗传分析、受体表达和抑制剂实验用于揭示 RANK-L 和 TNF 信号传导层次。结果 TNF 可作为 CD14 + 单核细胞 (MO) 分化为 OC 的关键稳态调节剂,通过抑制破骨细胞生成以有利于巨噬细胞发育。相反,一种以前未发现的 CD14 − CD16 − CD11c + 髓系前 OC 群体不受这种负调节。在健康的 CD14 + MO 中,TNF 通过 TNFR1-IKK β 依赖性途径驱动 RANK 启动子的表观遗传修饰并停止破骨细胞生成。在 RA 患者亚组中,CD14 + MO 表现出改变的表观遗传状态,导致 TNF 介导的 OC 稳态失调。结论这些发现从根本上重新定义了 RANK-L 和 TNF 之间的关系。此外,他们还鉴定出了一种新的人类循环非 MO OC 前体池,与 MO 不同,它们在表观遗传上经过预处理以忽略 TNF 介导的信号传导。在 RA 中,这种表观遗传预处理发生在 MO 区室中,从而导致该通路失败的病理后果。