1 波兰华沙玛丽亚居里国家肿瘤研究所黑色素瘤、软组织和骨肉瘤系 2 波兰克拉科夫大学医院肿瘤学学术系 3 波兰克拉科夫雅盖隆大学肿瘤学学术系 4 波兰华沙内务部中央临床医院病理形态学科 5 波兰华沙拉扎斯基大学医学院 6 波兰罗兹医科大学肿瘤外科系,罗兹地区多学科 M. Kopernik 纪念肿瘤和创伤学中心肿瘤外科系 II 7 波兰克拉科夫安德烈·弗里茨·莫德热夫斯基克拉科夫大学(AFMKU)医学与健康科学学院外科系 8 波兰罗兹波兰母亲纪念卫生研究所肿瘤学系 9格利维采;波兰骨髓移植和肿瘤血液学系 10 波兰华沙玛丽亚居里国家肿瘤研究所病理学和实验室诊断学系 11 波兰华沙血液学和输血医学研究所血液学诊断学系 12 波兰克拉科夫分院玛丽亚居里国家肿瘤研究所临床肿瘤学系 13 波兰罗兹医科大学放射治疗科 14 波兰华沙玛丽亚居里国家肿瘤研究所头颈癌系 15 华沙医科大学、波兰华沙基督儿童纪念学术医院 16 波兰华沙中央学术医院 MOD 军事医学研究所 17 波兰华沙玛丽亚居里国家肿瘤研究所肺和胸部癌症系
参考:1。伦敦,Cheryl A.等。“多中心,安慰剂对照,双盲,随机研究口服磷酸盐(SU11654),一种受体酪氨酸激酶抑制剂,用于治疗手术后的经常性(局部或远距离)肥大细胞肿瘤的狗。”临床癌症研究15.11(2009):3856-3865。2。Weishaar,K。M.等。“用泼尼松和toceranib或vinblastine治疗的狗中的肥大细胞肿瘤中的C-KIT突变和定位状态作为反应预测因子。”;兽医内科杂志32.1(2018):394-405。3。Sheppard-Olivares,Sabina等。“用磷酸盐的犬类胰岛素治疗:30例(2009-2019)。” (2020)。4。伦敦,谢丽尔等。“实体瘤中磷酸盐(Palladia®)生物学活性的初步证据。”兽医和比较肿瘤学10.3(2012):194-205。5。Heaton,Caitlin M.等。“对狗的吞噬腺肛门囊腺癌的治疗评估。”兽医内科杂志34.2(2020):873-881。6。Berger,Erika P.等。“回顾性评估Toceranib磷酸盐(Palladia®)用于治疗狗的胃肠道肿瘤。” 《兽医内科》杂志32.6(2018):2045-2053。7。Ehling,Tara Jean等。8。OHUE,Yoshihiro和Hiroyoshi Nishikawa。 “癌症中的调节T(Treg)细胞:Treg细胞可以成为新的治疗靶点吗?”癌症科学110.7(2019):2080-2089。 9。OHUE,Yoshihiro和Hiroyoshi Nishikawa。“癌症中的调节T(Treg)细胞:Treg细胞可以成为新的治疗靶点吗?”癌症科学110.7(2019):2080-2089。9。“一种前瞻性,多中心的兽医疗法肿瘤学组研究揭示了毒氨酸磷酸盐(Palladia)作为犬类鼻癌治疗的主要或辅助剂的潜在疗效。”兽医和比较肿瘤学20.1(2022):293-3-303。Regan,Daniel P.等。 “ Losartan阻止了骨肉肉瘤吸收的单核细胞募集,并与激酶抑制剂Toceranib结合使用,在犬转移性骨肉瘤中具有显着的临床益处。”临床癌症研究(2021)。 10。 Maeda,Shingo等。 “拉帕替尼是狗肌肉尿无尿癌的一线治疗。”科学报告12.1(2022):1-10。 11。 Rodrigues,Lucas等。 “在自发产生的癌症中共享热点突变,作为精确治疗的无与伦比的比较模型。” Biorxiv(2021)。 12。 eStabrooks,蒂莫西,询问犬脾脏heman giosarcoma中体细胞突变的临床意义。 兽医学会,虚拟会议,1221年11月4日至6日。 13。 Rodrigues,Lucas等。 lapatinib治疗携带ERBB2 V659E突变的II级和III级肺癌:初步数据。 兽医癌症协会年中大会,瓦拉尔塔港,2022年4月9日至12日。Regan,Daniel P.等。“ Losartan阻止了骨肉肉瘤吸收的单核细胞募集,并与激酶抑制剂Toceranib结合使用,在犬转移性骨肉瘤中具有显着的临床益处。”临床癌症研究(2021)。10。Maeda,Shingo等。“拉帕替尼是狗肌肉尿无尿癌的一线治疗。”科学报告12.1(2022):1-10。11。Rodrigues,Lucas等。“在自发产生的癌症中共享热点突变,作为精确治疗的无与伦比的比较模型。” Biorxiv(2021)。12。eStabrooks,蒂莫西,询问犬脾脏heman giosarcoma中体细胞突变的临床意义。兽医学会,虚拟会议,1221年11月4日至6日。13。Rodrigues,Lucas等。lapatinib治疗携带ERBB2 V659E突变的II级和III级肺癌:初步数据。兽医癌症协会年中大会,瓦拉尔塔港,2022年4月9日至12日。
Singh Biotechnology (SBT) 是一家私人控股的初创公司,成立于 2014 年,总部位于佛罗里达州坦帕湾,专注于发现和开发专有的单域抗体 (sdAbs),用于治疗各种癌症、自身免疫、眼科和传染病。单域抗体也称为纳米抗体,是源自 VHH(骆驼科动物重链抗体中的单个 N 端结构域)的小抗原结合片段 (15 kDa)。纳米抗体代表了最小的传统抗体,包括高稳定性和溶解性,以及由于其体积小而能够与难以或不可能靶向的抗原位点相互作用的能力。认识到 sdAbs 靶向传统上被认为无法用药的蛋白质的潜力,SBT 开发了一个优化 sdAbs 的平台,该平台利用它们的三个互补决定区 (CDR),控制纳米抗体的抗原特性。 SBT 利用其技术平台生成了治疗性单域抗体,专门针对发生突变、过度表达或在疾病发病机制中起重要作用的细胞内分子。该公司的主要资产是 SBT-100,这是一种双特异性单域抗体,可与 KRAS 和 STAT3(两种主要癌症靶点)结合,并能够穿过血脑屏障 (BBB) 和细胞膜。SBT-100 在体外和体内均表现出对多种人类癌症的治疗作用。SBT 创始人兼首席执行官 Sunanda Singh 表示:“我们认为,单域抗体代表了一种有前途的靶向癌症免疫疗法的新方法,因为它们能够专门针对细胞内蛋白质。”“我们在短时间内取得了巨大的进展,开发出单域抗体疗法,有可能提供高度针对性的化合物,帮助改善许多癌症患者的生活质量,这让我们深受鼓舞。” SBT 已开始对 SBT-100 进行毒理学研究,以备计划中的肿瘤学 IND 申请。该公司已获得美国食品药品管理局 (FDA) 授予的胰腺癌和骨肉瘤孤儿药资格,SBT-100 的 IND 前简报包也获得了 FDA 的好评,其中包括三阴性乳腺癌 (TNBC) 的临床前数据、SBT-100 的 GMP 制造工艺细节、两种物种毒理学研究提案以及 1 期临床研究路线图。
摘要 目的:MRN(MRE11-RAD50-NBS1)蛋白复合物作为DNA损伤传感器发挥作用,在协调DNA双链断裂修复中起着至关重要的作用。尽管已经证明功能失调的MRN活性会使癌细胞对某些DNA损伤剂或PARP抑制剂敏感,但RAD50对鲁卡帕尼和阿霉素治疗的功能意义尚未研究。本研究的目的是研究RAD50缺陷的癌细胞对鲁卡帕尼和阿霉素组合的反应。材料和方法:本研究使用人骨骨肉瘤上皮细胞(U2OS)来评估RAD50表达水平的治疗潜力。应用RNA干扰技术来沉默RAD50 mRNA活性的表达。使用qRT-PCR技术来研究相关基因的mRNA表达水平。进行蛋白质印迹分析以评估相关蛋白质的表达水平。进行克隆存活试验以分析 RAD50 缺失对鲁卡帕尼和阿霉素联合治疗的影响。结果:RAD50 敲低导致 MRE11 和 NBS1 蛋白水平显着下降,但不影响 mRNA 和蛋白质水平上的 p53 和 p21 表达。此外,RAD50 缺失的细胞对急性阿霉素治疗的 DNA 损伤反应激活受损。我们最终表明,当与 PARP 抑制剂鲁卡帕尼联合使用时,RAD50 耗竭会增加阿霉素的细胞毒性。结论:总之,我们的临床前研究结果表明,RAD50 表达水平可以作为评估涉及 PARP 抑制剂的精准癌症治疗的预测生物标志物。关键词:RAD50、MRN 复合物、鲁卡帕尼、阿霉素。 ÖZ Amaç:MRN (MRE11-RAD50-NBS1) 蛋白质复合物与 DNA 传感器相连,并与同源物重新组合,并与 DNA 相匹配。 Fonksiyonel olmayan MRN 激活 kanser hücrelerini DNA'ya zarar veren ajanlara veya PARP 抑制剂 karşı duyarlı hale getirdiği gösterilmiş olsa da、RAD50'nin rucaparib ve doksorubisin tedavileri üzerindeki fonksiyonel önemi henüz araştırılmamıştır。但是,RAD50 缺陷可能与 rucaparib 和 doksorubisin 组合在一起。
本公告是在关键数据的自然细胞生物学中最近出版的,进一步阐明了MAF生物标志物周围的生物学。INBIomotion联合创始人Roger Gomis教授Roger Gomis教授领导的IRB巴塞罗那的一支团队在此出版物中揭示了MAF基因扩增会增加乳腺癌患者转移风险的机制。这一发现是理解转移分子基础的关键步骤,并且对治疗具有相关的临床意义。关于Inbiomotion Inbiomotion是IRB巴塞罗那和ICREA的衍生作品,该衍生作用是由Roger Gomis教授于2011年成立的,此后将MAF基因鉴定为预测乳腺癌中骨转移的生物标志物。Inbiomotion基于MAF基因扩增(MAFTest®)的检测开发了一种诊断套件,以促进精确医学并改善乳腺癌患者的治疗。该公司拥有200多项专利和专利申请,涵盖其专有MAFTest®鱼,并在早期乳腺癌患者的辅助治疗中使用双膦酸盐。公司的主要投资者是YSIOS Capital,Caixa Capital Risc,Alta Life Sciences和Vila Casas Foundation。有关更多信息,请访问www.inbiomotion.com。关于Spa Farma Spa Farma是一家家族拥有的公司,由创始人Rodolfo Ferrari的孙女AliseéMattaEchaurren拥有。公司的遗产深深植根于长期以来的创新和成功遗产。Spa Farma成为战后不久的第一家在意大利生产和商业化青霉素的公司之一,创造了历史。由于与亚历山大·弗莱明爵士的科学合作,这项成就之后是溶菌酶的发展。在60年代,该公司将其业务扩展到其他治疗领域,目前的主要领域是:骨/疼痛,心脏代谢,肿瘤学和肾脏病。最近,该公司在西班牙和葡萄牙建立了一个会员,请访问www.spafarma.com。关于MAF基因MAF(间充质肌动纤维骨肉瘤基因,AP-1家族的转录因子)在原发性癌症肿瘤中放大。它与转移的增加有关,尤其是骨转移。MAF的转录控制基因,例如PTHRP,该基因调节了与转移相关的细胞过程,例如生存,起始,代谢重新布线和对骨髓的粘附 -
1 INSERM U981,古斯塔夫·鲁西,维尔瑞夫; 2 法国维尔瑞夫古斯塔夫鲁西癌症医学系; 3 慕尼黑综合癌症中心和慕尼黑大学医院第三医学系,慕尼黑; 4 德国海德堡大学医院和个性化医疗中心 (ZPM) 病理学研究所; 5 巴黎萨克雷大学医学院,克里姆林宫比塞特尔; 6 药物开发部(DITEP),Gustave Roussy,维尔瑞夫; 7 Oncostat U1018,法国巴黎萨克雷大学国家健康与医学研究院,标记为抗癌联盟,维尔瑞夫; 8 生物统计学和流行病学系,Gustave Roussy,维尔瑞夫; 9 法国巴黎西岱大学居里研究所遗传学系、INSERM U1016; 10 马德里 10 月 12 日大学医院、10 月 12 日健康研究中心医院肿瘤医学系; 11 巴塞罗那 Vall d'Hebron 肿瘤研究所 (VHIO),巴塞罗那 Vall d'Hebron 医院校区; 12 西班牙维克大学加泰罗尼亚中央大学; 13 巴西圣保罗肿瘤诊所; 14 德国癌症研究中心 (DKFZ) 海德堡分子血液学/肿瘤学临床合作单位; 15 德国海德堡大学内科第五系,海德堡,德国; 16 华沙玛丽亚居里国家肿瘤研究所软组织/骨肉瘤和黑色素瘤系; 17 波兰华沙波兰科学院莫萨科夫斯基医学研究中心实验药理学系; 18 美国休斯顿德克萨斯大学 MD 安德森癌症中心研究癌症治疗学系; 19 伦敦大学学院医学肿瘤学系,伦敦; 20 英国伦敦圣巴塞洛缪医院肿瘤内科; 21 意大利梅尔多拉 IRCCS 罗马涅肿瘤研究所 (IRST)“Dino Amadori”科学理事会; 22 纽约纪念斯隆凯特琳癌症中心病理学系; 23 美国纽约纪念斯隆凯特琳癌症中心医学部乳腺医学和临床遗传学服务中心; 24 法国维尔瑞夫古斯塔夫鲁西医学生物学和病理学系肿瘤遗传学服务; 25 意大利维罗纳大学医学院诊断与公共卫生系病理学系
简介 肿瘤抑制蛋白 p53 在癌细胞周期中起着至关重要的作用 (1, 2)。大约 50% 的癌症都存在 TP53 基因突变 (2, 3)。在具有 WT p53 的细胞中,由于细胞应激或 DNA 损伤而激活 p53 会导致许多 p53 靶基因的转录激活,从而导致细胞周期停滞、凋亡或衰老 (1, 2, 4)。细胞中的 WT p53 水平受负反馈回路调节。激活的 p53 与 MDM2 基因中的 p53 反应元件结合,导致 MDM2 表达增加。MDM2 蛋白是一种 E3 泛素连接酶,反过来又与 p53 结合并泛素化,导致其被蛋白酶体降解 (5–9)。因此,MDM2 是 p53 的重要调节因子,可以成为具有 WT p53 的癌症的有效治疗靶点。多年来,人们一直对通过药物抑制 MDM2 来稳定 p53 感兴趣,尤其是对于伴有 MDM2 扩增的癌症,包括脂肪肉瘤、尤文氏肉瘤、骨肉瘤和白血病 (2, 10–12)。目前有几种针对 MDM2-p53 相互作用的 MDM2 抑制剂正在临床试验中用于治疗这些癌症 (2),尽管没有一种抑制剂获得 FDA 批准用于任何治疗用途。默克尔细胞癌 (MCC) 是一种高度侵袭性的皮肤神经内分泌癌,发病率很高 (13–15)。MCC 经常转移到淋巴结和远处器官,包括肝脏、骨骼、胰腺、肺和脑 (13–15)。MCC 有两种不同的病因。克隆整合的默克尔细胞多瘤病毒 (MCPyV) 存在于病毒阳性的 MCC (MCCP) 中。这些肿瘤的肿瘤突变负荷较低,具有接近正常的二倍体基因组 (14–20)。相反,病毒阴性 MCC (MCCN) 肿瘤是由慢性紫外线照射引起的,导致高突变负荷和强烈的紫外线突变特征 (14–20)。尽管病因不同,但两种形式的 MCC 都表现出相似的组织学、侵袭性表型和对治疗的反应,表明它们扰乱了相似的致癌途径。虽然 MCCN 通常含有 TP53 和视网膜母细胞瘤肿瘤抑制因子 (RB1) 的功能丧失突变,但 MCCP 通常含有 WT p53 和视网膜母细胞瘤 (RB) 蛋白 (14、15、20–22)。大约 80% 的 MCC 肿瘤是 MCCP,其中大多数具有 WT p53 (16、18、20、23–26)。
1 INSERM U981,古斯塔夫·鲁西,维尔瑞夫; 2 法国维尔瑞夫古斯塔夫鲁西癌症医学系; 3 慕尼黑综合癌症中心和慕尼黑大学医院第三医学系,慕尼黑; 4 德国海德堡大学医院和个性化医疗中心 (ZPM) 病理学研究所; 5 巴黎萨克雷大学医学院,克里姆林宫比塞特尔; 6 药物开发部(DITEP),Gustave Roussy,维尔瑞夫; 7 Oncostat U1018,法国巴黎萨克雷大学国家健康与医学研究院,标记为抗癌联盟,维尔瑞夫; 8 生物统计学和流行病学系,Gustave Roussy,维尔瑞夫; 9 法国巴黎西岱大学居里研究所遗传学系、INSERM U1016; 10 马德里 10 月 12 日大学医院、10 月 12 日健康研究中心医院肿瘤医学系; 11 巴塞罗那 Vall d'Hebron 肿瘤研究所 (VHIO),巴塞罗那 Vall d'Hebron 医院校区; 12 西班牙维克大学加泰罗尼亚中央大学; 13 巴西圣保罗肿瘤诊所; 14 德国癌症研究中心 (DKFZ) 海德堡分子血液学/肿瘤学临床合作单位; 15 德国海德堡大学内科第五系,海德堡,德国; 16 华沙玛丽亚居里国家肿瘤研究所软组织/骨肉瘤和黑色素瘤系; 17 波兰华沙波兰科学院莫萨科夫斯基医学研究中心实验药理学系; 18 美国休斯顿德克萨斯大学 MD 安德森癌症中心研究癌症治疗学系; 19 伦敦大学学院医学肿瘤学系,伦敦; 20 英国伦敦圣巴塞洛缪医院肿瘤内科; 21 意大利梅尔多拉 IRCCS 罗马涅肿瘤研究所 (IRST)“Dino Amadori”科学理事会; 22 纽约纪念斯隆凯特琳癌症中心病理学系; 23 美国纽约纪念斯隆凯特琳癌症中心医学部乳腺医学和临床遗传学服务中心; 24 法国维尔瑞夫古斯塔夫鲁西医学生物学和病理学系肿瘤遗传学服务; 25 意大利维罗纳大学医学院诊断与公共卫生系病理学系
胆管癌 (CCA) 是一种罕见的腺癌,起源于胆管上皮细胞,常表现为局部晚期或转移性病变,预后极差 [1]。根据病理结构的位置,可分为三型:肝内胆管癌 (iCCA)、肝门部胆管癌 (pCCA) 和远端胆管癌 (dCCA) [2]。目前胆管癌的首选治疗方法是手术切除,但该方法仅适用于早期。对于不适合手术的中晚期患者,一般选择局部区域治疗、化放疗和靶向药物治疗 [3]。但即使采用综合治疗,治疗效果也不令人满意。3 期和 4 期胆管癌的 5 年总生存率分别为 10% 和 0% [4]。此外,由于发病率上升,胆管癌死亡人数累计增加了39%,男性死亡率(1.9/100 000)高于女性死亡率(1.5/100 000)[5]。近年来,生物信息学和微阵列方法在复杂疾病的多基因或蛋白质探索和分析中变得越来越有效[6]。通过应用相应的生物信息学算法,这些方法可以识别疾病的核心驱动基因和异常调控通路,有助于研究人员系统、准确、有效地揭示治疗的分子靶点,为肿瘤的发生发展提供理论依据。分子对接是一种成熟的基于计算机结构的方法,广泛应用于药物研发[7]。虚拟筛选是一种具有多种可用工具的计算技术[8],通过分子对接可以从数百万个分子中筛选出具有药物特性的活性化合物。因此,虚拟筛选和分子对接是合理药物设计和药物化学中广泛实用的方法[9,10]。例如,针对胆管癌中潜在的驱动基因畸变,已经开发了几种治疗晚期疾病的新药,包括FGFR抑制剂和IDH抑制剂[11]。在本研究中,我们利用生物信息学和虚拟筛选方法相结合,筛选出可以结合特定靶点的药物,以促进胆管癌药物的研究和开发。此外,该方法已被证明是有效的,并有助于治疗其他疾病,如骨肉瘤和胶质母细胞瘤[12,13]。本研究从基因表达综合数据库中下载了3个涉及CCA的mRNA微阵列数据集(GSE132305、GSE89749和GSE45001),并通过比较CCA和正常组织的基因表达谱来分析这些数据集以识别差异表达基因(DEG)。然后,使用Venn分析筛选出相互的DEG。通过基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析,研究CCA的生物学功能和信号通路改变。进行PPI网络构建,识别枢纽基因。接下来,利用虚拟筛选、分子对接等一系列结构生物学方法,筛选和识别对MYC有潜在抑制作用的先导化合物。此外,我们的研究还预测了CCA在体内的吸收、分布、代谢和功能。
因此,识别信息性生物标志物仍然是一个重大挑战。自过去十年以来,作为各种重要生物学过程的调节剂,表观遗传机制变得广泛突出,而这些过程的核心是微核酸(miRNAS)(Mirnas)(Filipowicz等,2008)。miRNA属于小型非编码RNA类,该类别通过靶mRNA降解或翻译抑制在转录后调节基因表达(Pu等,2019)。miRNA:mRNA双链形成需要两个序列中八个核苷酸种子区域之间的互补性。双链体针对多核糖体进行调节,以调节mRNA翻译过程,或者针对储存/降解的P体型(Filipowicz等,2008)。miRNA可以控制近60%的蛋白质编码基因的表达,因此,这些被认为是各种疾病早期诊断的重要生物标志物。它们作为有效生物标志物的潜力可以从独特的分泌特性中得出,因为它们在没有细胞对细胞接触的各种细胞类型中调节多个基因的表达(Schwarzenbach等,2014)。除了它们在组织中的存在外,miRNA还分泌在细胞外流体,血浆和唾液中,因此可以作为疾病诊断的潜在无侵入性标记物(François等,2019)。关于miRNA参与人类疾病的初步证据起源于癌症研究。miR-153与各种疾病有关,例如高血压,骨肉瘤,胶质母细胞瘤和其他各种癌症。各种表达的促进研究表明,与对照相比,癌症样品中不同miRNA的表达异常(Calin等,2002)。在AD中始终发现受管制的miRNA包括: miR-9,miR-29,miR-34,miR-107,mir-181,mir-186,mir-146a,mir-155和mir-153(Femmminella et al。,2015)。miR-153通过kCNQ4的下调有助于高血压状态(Carr等,2016)。miR-153表达的增加升高了神经发生和改善的认知(Qiao等,2020)。此外,与年龄匹配的对照样本相比,在早期,中,中度和严重的AD病例中还观察到了miR-153的表达水平的显着降低。此外,在miR-153和β斑块负担之间观察到了反相关性,使其成为潜在的疾病生物标志物和新型药物靶标(Long等,2012)。miR-153-3p的异位表达通过增加IL-1β,TNF-α和IL-6的释放,并通过调节GPR55表达来降低神经干细胞分化,从而诱导了炎症(Dong等,2023)。增加了miR-153在海马中破坏突触1的表达,并受损的谷氨酸能囊泡转运受损,从而导致大鼠慢性脑灌注不足(Zhang等,2020)。由于miR-153在包括AD在内的神经元疾病中的重要作用,至关重要的是要确定与该miRNA相同的分子靶标,以阐明导致疾病表型的基本机制。由于miRNA在与疾病相关的过程中的重要性需要改善miRNA目标预测的速度。由于当前的实验程序的局限性,有关miRNA的调节和治疗作用的数据很少(Jaberi等,2024)。可用于揭示具有相对灵敏度和特异性的大部分miRNA的分子靶标的分子靶标的