hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:骨膜被称为覆盖大多数骨表面的薄结缔组织。从第一世纪的研究中证实了其膨胀的骨骼再生能力。最近,揭露了具有独特生理特性的骨膜中的多能干细胞。存在于动态环境中,受复杂的分子网络调节,骨膜干细胞出现是具有强大的增殖和多重分化能力。通过对研究的持续探索,我们现在开始更深入地了解骨膜在骨形成和原位或异位修复中的巨大潜力。不可否认的是,骨膜正在进一步发展为一种更有希望的策略,可以在骨组织再生中利用。在这里,我们总结了骨膜,细胞标记物以及骨膜干细胞的生物学特征的发育和结构。然后,我们审查了它们在骨修复和基本分子调节中的关键作用。对骨膜相关的细胞和分子含量的理解将有助于增强骨膜的未来研究工作和应用转化。
骨形成是一个复杂的过程,涉及许多不同细胞类型的协调活性,包括成骨细胞和骨细胞。骨膜是结缔组织的致密膜,覆盖骨骼外表面,对于骨组织的生长,修复和维持至关重要。本研究的目的是总结骨膜从青春期到成年和老年的骨骼形成的贡献。这是使用PubMed电子互联网数据库的叙事文献综述。搜索基于关键字“骨膜骨形成”。纳入标准是临床前或临床研究,评估了骨膜在骨形成中的作用。非英语研究被排除在外。原始搜索提供了126篇发表论文。在包含和排除标准之后,我们终于接受了20篇文章以进行当前的审查。检查了纳入研究的参考列表后,添加了14项研究,留下34项研究进行本综述。在整个寿命中,骨膜骨形成发生动态变化。在青春期,骨膜具有高度成骨,并积极地有助于骨骼的快速生长。成年后,它在维持骨强度和适应机械载荷方面起着作用。在成年期,骨膜继续提供骨基细胞的来源,这有助于骨骼重塑和修复的持续过程。在更高级的年龄中,骨膜对激素和细胞因子的反应在骨形成方面降低;但是,可以保留骨膜细胞的成骨分化的能力。
抽象骨再生是由骨骼干/祖细胞(SSPC)介导的,这些细胞主要是从骨损伤后从骨膜中募集的。骨膜的组成以及SSPC激活和分化的步骤仍然很少理解。在这里,我们在骨修复的早期阶段(https://fracture-repair-atlas.cells.ucsc.edu)生成了骨膜和骨折部位的骨膜的单核图谱。我们鉴定出表达干性标记物(PI16和LY6A /SCA1)的骨膜SSPC,并通过采用损伤诱导的纤维生成细胞(IIFC)命运来应对骨折,然后在经历骨生成或软骨发生之前。我们分别鉴定了与IIFC相关的不同基因核,以及它们的参与术分别涉及Notch,Wnt和昼夜节律时钟信号传导。最后,我们表明IIFC是骨折环境中旁分泌信号的主要来源,这表明该瞬时IIFC种群在骨折愈合过程中起着至关重要的旁分泌作用。总体而言,我们的研究提供了骨折愈合的早期阶段的完整时间地形,以及骨膜SSPC对损伤的动态反应,从而重新定义了我们对骨骼再生的了解。
开发用于修复临界骨缺损的脚手架的发展在很大程度上依赖于建立神经血管化的网络,以适当地渗透神经和血管。尽管在使用注入各种代理的人造骨状脚手架方面取得了重大进步,但仍然存在挑战。天然骨组织由一个多孔骨基质组成,该骨基质被神经血管化的骨膜包围,具有独特的压电特性,对骨骼生长必不可少。从该组件中汲取灵感,我们开发了一种模仿骨膜骨骨架的脚手架支架,具有压电特性,用于再生临界骨缺损。该支架的骨膜样层具有双网络水凝胶,由螯合的藻酸盐,明胶甲基丙烯酸酯和烧结的whitlockite纳米颗粒组成,模仿天然骨膜的粘弹性和压电性能。骨状层由壳聚糖和生物活性羟基磷灰石的多孔结构组成。与常规的骨状支架不同,这种生物启发的双层支架显着增强了成骨,血管生成和神经发生,结合了低强度脉冲超声辅助压电刺激。这样的方案增强了体内神经血管化的骨再生。结果表明,双层支架可以作为在动态物理刺激下加快骨再生的有效自动电刺激器。
罗切斯特大学医学院的肌肉骨骼研究中心提供了博士后同位职位。我们正在寻求一个高度积极进取的人加入NIH资助的研究计划,以研究修复和再生期间骨组织血管化。该研究计划将骨组织工程,血管生物学和骨骼生物学整合,重点是对骨骼专业血管形成的分子和细胞控制在修复和再生过程中。成功的候选人将与科学家团队一起研究骨祖细胞与血管生成细胞的相互作用,利用最先进的遗传,成像和工程方法来探索和建立新的疗法。候选人将有机会学习尖端技术,例如多光子显微镜,轻度显微镜,空间转录组学,3D打印,以了解骨膜介导的骨膜介导的分子控制以及骨移植修复和重建的机制。
引入骨骼的再生取决于各种因素,包括骨骼干/祖细胞(SSPC)及其与骨膜和骨髓小裂细胞中其他细胞种群的相互作用。裂缝会损害骨骼和周围的组织,导致出血,血肿形成以及hema-拓扑细胞流向骨折部位。这些事件导致SSPC和内皮细胞(EC)的扩展。我们实验室和其他小组的先前研究表明,骨膜是导致愈合的主要原因(1-3)。最近由Liu等人发表的遗传谱系追踪研究报道了支持骨膜作为骨折愈合的主要促进者。(4)。控制组织修复的关键事件是SSPC是否发生增殖或分化。在骨折愈合的早期阶段,自分泌和旁分泌信号将SSPC的命运直接降低对软骨和成骨谱系的承诺。然而,控制细胞异质愈伤组织中SSPC激活的分子途径和细胞对细胞信号传导机制仍然鲜为人知。Notch信号传导是一种保守的途径,在发育,稳态和组织再生中具有作用(5)。该途径在维持祖细胞池和控制各种细胞类型的成熟谱系中的分化中起着重要作用(6)。Notch信号传导的作用是分歧和温度控制的,取决于细胞谱系成熟的特定组织和阶段(5,7)。但是,Notch也Notch信号传导取决于Notch配体(JAGGED 1和2 [JAG1和-2]以及DELTA样配体1、3和4 [DLL1,-3和-4])与Notch受体(Notch1-4)(Notch1-4)(5,6)。在接收配体结合后,受体的构象变化促进了Notch受体细胞内结构域(NICD)的γ-分泌酶切割。然后,NICD与重组信号结合蛋白结合,用于免疫球蛋白κJ区(RBPJκ)和类似策划的蛋白,诱导基因转构。此信号序列通常称为典型的Notch信号传导。
随着时间的推移而生长并引起骨骼的结构变化(2)。根本病变也可以在根本治疗完成后完成灌溉和不完全填充后完成。在对根管处理的牙齿的研究中,顶端牙周炎的速率在16-61%(3)之间。根尖的治疗预后与根管治疗的成功相关,并通过放射线照相对照进行了评估。在X光片拍摄的病变大小或其大小的减小表明该治疗是成功的。骨膜病变已被许多方式分类(4)。Ørstavik开发了一个名为Periapical指数评分系统(PAI)的评分系统,该系统提供
1。张力2。偏头痛3。集群4。鼻窦偏头痛,雷纳塔是单方面的,令人发指的头痛,其次是以下一个或多种症状:恶心,呕吐,光,声音或笑声的感觉。攻击发生骨膜,可以持续4到72小时。偏头痛攻击的频率不同,从一生中的几个人到一个月或一周的几个。如何诊断?诊断包括仔细的解剖学:促进因素,个人和家庭解剖学,详细的种子学状况和心理状况,有时对诊断偏头痛很有价值。在非典型偏头痛或神经系统缺陷处应包括KTM,NMR,EEG,EVO CYRANI电位和超声神经诊断方法(多普勒超声和经颅多普勒)。如何治疗?偏头痛治疗针对: