骨骼肌组织工程领域的进展取决于体外生成稳定且栩栩如生的骨骼肌微组织。这需要一种跨学科的方法,将细胞整合到生物或合成的机械微环境中。这样的工作可以精确地模拟骨骼肌的功能和疾病,并在生成可移植组织以治疗肌肉创伤和退化方面取得进展。骨骼肌是一种高度组织化的复杂器官,由结缔组织、血管和排列整齐的收缩肌纤维束组成,受运动神经元(MN)的支配;运动神经元是中枢神经系统的输出层。这种由不同细胞类型和细胞外结构组成的复杂网络协同作用,促进肌肉力量的产生、传递、维持和修复。[1]
©2024作者。开放访问。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
摘要:包括散发性(SALS)和家族性(FALS)病例的肌萎缩性侧索硬化症(ALS)是一种毁灭性的神经退行性疾病,其特征是运动神经元的进行性变性,导致肌肉萎缩和各种临床表现。但是,尚不清楚影响该疾病的复杂基本机制。另一方面,由于缺乏生物标志物和治疗靶标,该疾病也没有良好的预后。因此,在这项研究中,通过生物信息学分析,使用GEO GSE41414数据集分析了受sals影响的肌肉组织,鉴定了397个差异表达的基因(DEGS)。功能分析显示,与肌肉发育相关的320个上调的DEG和77个与能量代谢相关的下调DEG。蛋白质 - 蛋白质相互作用网络分析确定了20个枢纽基因,包括EIF4A1,HNRNPR和NDUFA4。此外,miRNA靶基因网络揭示了17种与HUB基因相关的miRNA,HSA-MIR-206,HSA-MIR-133B和HSA-MIR-100-5P先前与ALS有关。这项研究通过将获得的信息与全面的文献综述相关联,为ALS提供了新的潜在生物标志物和治疗靶标,从而提供了研究其在ALS中作用的新潜在目标。
摘要:表观转录组学是指通过影响 RNA 功能的 RNA 修饰和编辑来对基因表达进行转录后调控。已描述了多种类型的 mRNA 修饰,其中包括 N6-甲基腺苷 (m6A)、N1-甲基腺苷 (m1A)、7-甲基鸟苷 (m7G)、假尿苷 (Ψ) 和 5-甲基胞苷 (m5C)。它们改变 mRNA 结构,从而改变稳定性、定位和翻译效率。表观转录组的扰动与人类疾病有关,因此为潜在的治疗方法提供了机会。在这篇综述中,我们旨在概述表观转录组标记在骨骼肌系统中的功能作用,特别是在胚胎肌生成、肌细胞分化和肌肉稳态过程中。此外,我们探索了高通量表观转录组测序数据来识别肌肉特异性基因中的 RNA 化学修饰,并讨论了可能的功能作用和潜在的治疗应用。
基因组学与儿童健康中心,Blizard Institute,Barts和伦敦医学院和牙科学院,伦敦皇后大学,伦敦皇后大学,伦敦纽瓦克街4号,伦敦E1 2at,英国B干细胞Be茎B干细胞实验室,国家肠研究中心,Blizard Institute,Barts,Barts,Barts,Barts and Barts and Barts of Barts School of London Mary of Mary of London newark Street,伦敦皇后区,伦敦皇后区。伦敦伦敦伦敦伦敦E1 4NS,英国D威廉·哈维研究所,巴特斯和伦敦医学院和牙科学院,英国玛丽皇后大学,英国皇后大学E罕见病研究单位,宾夕法尼亚州大街610号,美国马萨诸塞州剑桥市大街610号,美国Fimond街610科学,干细胞和再生医学财团,李卡·夏德医学学院,香港大学,香港,香港,中国,NIHR生物医学研究中心,大奥蒙德街医院,大奥蒙德街,英国伦敦大奥蒙德街,英国基因组学与儿童健康中心,Blizard Institute,Barts和伦敦医学院和牙科学院,伦敦皇后大学,伦敦皇后大学,伦敦纽瓦克街4号,伦敦E1 2at,英国B干细胞Be茎B干细胞实验室,国家肠研究中心,Blizard Institute,Barts,Barts,Barts,Barts and Barts and Barts of Barts School of London Mary of Mary of London newark Street,伦敦皇后区,伦敦皇后区。伦敦伦敦伦敦伦敦E1 4NS,英国D威廉·哈维研究所,巴特斯和伦敦医学院和牙科学院,英国玛丽皇后大学,英国皇后大学E罕见病研究单位,宾夕法尼亚州大街610号,美国马萨诸塞州剑桥市大街610号,美国Fimond街610科学,干细胞和再生医学财团,李卡·夏德医学学院,香港大学,香港,香港,中国,NIHR生物医学研究中心,大奥蒙德街医院,大奥蒙德街,英国伦敦大奥蒙德街,英国
摘要。成年骨骼肌是一种相对稳定的组织,因为多核肌肉纤维中含有丝质后肌肌。在产后早期生活中,肌肉生长是通过添加骨骼肌干细胞(卫星细胞)或后代来增加肌肉的生长。在Duchenne肌肉营养不良中,我们将以肌肉dys虫为例,肌肉发作缺乏肌营养不良蛋白,并且发生坏死。卫星细胞介导的再生是为了修复和替换坏死的肌肉,但是随着再生肌肉纤维仍然缺乏肌营养不良蛋白,它们会发生进一步的变性和再生周期。AAV基因疗法是治疗杜钦肌营养不良症的有前途的方法。,但对于单剂量的AAV编码为微发育蛋白的AAV必须有效,必须持续存在处理的肌核中,必须靶向舒适的肌营养不良蛋白,并且必须针对数量的核。后一个点至关重要,因为AAV载体仍然是偶发性的,并且在分裂细胞中不会复制。在这里,我们描述和比较了啮齿动物和人类骨骼肌的生长,并讨论了肌肉坏死和再生导致骨骼肌内病毒基因组丧失的证据。此外,预计肌肉生长会导致转导的核稀释,尤其是在非常早期的干预下,但尚不清楚生长是否会导致不足的肌营养不良蛋白以防止肌肉折断。这应该是未来研究的重点。
人们对于长期(> 6 个月)适应低碳水化合物、高脂肪 (LCHF) 饮食如何影响健康、训练有素的个体的胰岛素信号知之甚少。本研究比较了葡萄糖耐量;骨骼肌葡萄糖转运蛋白 4 (GLUT4) 和胰岛素受体底物 1 (IRS1) 含量;以及代表主要能量途径 (3-羟基乙酰辅酶 A 脱氢酶、肌酸激酶、柠檬酸合酶、乳酸脱氢酶、磷酸果糖激酶、磷酸化酶) 的肌肉酶活性,这些酶活性代表了长期遵循 LCHF 或混合常量营养素 (Mixed) 饮食的训练有素的自行车运动员。在不同的日子里,进行了 2 小时口服葡萄糖耐量测试,并从禁食参与者的股外侧肌获取肌肉样本。与混合组相比,LCHF 组的葡萄糖耐量降低,因为在整个口服葡萄糖耐量测试过程中,血浆葡萄糖浓度明显较高,血清胰岛素浓度达到峰值的时间较晚(LCHF,60 分钟;混合,30 分钟)。各组之间的全身胰岛素敏感性无统计学差异(松田指数:LCHF,8.7 ± 3.4 vs. 混合,12.9 ± 4.6;p = .08)。GLUT4(LCHF:1.13 ± 0.24;混合:1.44 ± 0.16;p = .026)和 IRS1(LCHF:0.25 ± 0.13;混合:0.46 ± 0.09;p = .016)蛋白质含量在 LCHF 肌肉中较低,但酶活性无差异。我们得出结论,习惯于 LCHF 饮食的训练有素的自行车运动员与混合饮食的对照组相比,葡萄糖耐受性降低。较低的骨骼肌 GLUT4 和 IRS1 含量可能部分解释了这一发现。这可能反映了对习惯性葡萄糖可用性降低的适应,而不是病理性胰岛素抵抗的发展。
患有心力衰竭和射血分数降低 (HFrEF) 的患者症状负担重、生活质量低、存活率差。1 运动不耐受是 HFrEF 的主要症状,但其中只有部分可以用心脏(中枢)功能障碍来解释。2 外周骨骼肌病理被认为是 HFrEF 的关键治疗目标,2 因为它直接加剧症状并独立预测存活率。3 HFrEF 的肌肉病理特征是纤维萎缩和无力,以及早期疲劳,这是能量代谢受损和纤维类型异常转变(I 型到 II 型)的结果。2 这种肌肉病理的基础是多种机制,包括蛋白质降解增加(例如通过 MuRF 1 )、促炎细胞因子(例如通过白细胞介素 6 [IL-6]、肿瘤坏死因子 (TNF)- α )、活性氧和线粒体功能障碍。 2 减缓甚至逆转骨骼肌病理进展的治疗方法可能为改善 HFrEF 的临床结果提供机会。然而,
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该预印本版本的版权持有人,该版本发布于2025年2月5日。 https://doi.org/10.1101/2025.01.14.633043 doi:Biorxiv Preprint