在本文中,我们提出了一种新型的可变形神经关节网络 (DNA-Net),这是一种基于无模板学习的方法,用于从单个 RGB-D 序列进行动态 3D 人体重建。我们提出的 DNA-Net 包括一个神经关节预测网络 (NAP-Net),它能够通过学习预测一组关节骨骼来跟随输入序列中人体的运动,从而表示人体的非刚性运动。此外,DNA-Net 还包括有符号距离场网络 (SDF-Net) 和外观网络 (Color-Net),它们利用强大的神经隐式函数来建模 3D 几何和外观。最后,为了避免像以前的相关工作那样依赖外部光流估计器来获得变形线索,我们提出了一种新的训练损失,即基于易到难几何的损失,这是一种简单的策略,它继承了倒角距离的优点来实现良好的变形引导,同时仍然避免了其对局部不匹配敏感性的限制。DNA-Net 以自监督的方式直接在输入序列上进行端到端训练,以获得输入对象的 3D 重建。DeepDeform 数据集视频上的定量结果表明,DNA-Net 的表现优于相关的最先进方法,并且有足够的差距,定性结果还证明我们的方法可以高保真度和细节重建人体形状。
早期婴儿期是行为和神经认知的快速而动态的神经发育。纵向磁共振成像(MRI)是通过捕获大脑结构的发育性发展来研究这种关键阶段的有效工具。但是,由于参与者辍学和扫描失败,纵向MRI获取始终遇到严重的数据失误问题,这使纵向婴儿大脑Atlas的构建和发展轨迹描述非常具有挑战性。由于开发了基于AI的生成模型,神经图像完成已成为一种有力的技术,可以保留尽可能多的可用数据。但是,当前的图像完成方法通常在时间维度中每个内部主题内部都遇到不一致的,从而损害了整体质量。为了解决这个问题,我们的论文提出了一个两阶段的扩散模型Cas-diffcom,用于致密和纵向3D婴儿脑MRI MRI完成和超级分辨率。我们将提出的方法应用于Baby Connectome项目(BCP)数据集。实验结果验证了Cas-Diffcom在纵向婴儿脑图像完成中既可以达到单个共识和高保真度。我们进一步将生成的婴儿脑图像应用于两个下游任务,即脑组织分割和发育轨迹描述,以声明其在神经科学领域中面向任务的潜力。
1) 空中运输建模,包括运输飞机内部的货物运动限制 a。地板摩擦和约束 b。重力下降模型 c。 飞机坡道的弹射模型 2) 弹射座椅模型包括: a。 火箭/弹射器性能 b。 DRI 和类似的暴露计算 3) 重要的货物模型,包括: a。包括多个马赫数和 AOA 表的高端空气动力学模型 b。用于重新定位模拟的多个线束连接点模型 c。 与其他客户(如 NASA)的空气动力学数据库非常接近的空气动力学数据库 4) 轨迹重启功能大大减少了使用多个降落伞完成轨迹的工作量 5) 通过完成基本 DCLDYN 工具的外循环进行蒙特卡罗分析 6) 提供额外功能的重要变体,包括: a。客户可交付模拟,旨在附加到客户模拟 i。完全 6 自由度降落伞 ii。从客户模拟调用,为飞行模型提供高保真降落伞模型 b。 重新定位变体,在集群汇合和车辆之间提供高保真度的降落伞安全带 i。包括安全带释放和阻尼器输入通道,用于研究动态机动和潜在控制。7) 使用 FEA 工具,适当完成上述任务 a。降落伞的刚性和柔性表示之间的差异
便携式声学声纳浮标模拟器 II (PASS II) 是专为实验室声学系统集成和机载/海上声学系统操作验证而设计的测试装置。它是一种可现场使用的电子发射器、接收器和数据处理器。它模拟标准 NATO 声纳浮标信号,包括可选的环境条件。它提供命令信号生成 (CSG) 和命令功能选择 (CFS) 功能。它支持可变强度的基带刺激以及数据流。PASS II 发射器还可用于测试飞机上使用的顶部位置指示器 (OTPI) 系统。PASS II 使用数字信号处理器 (DSP) 为各种受支持的声纳浮标类型提供信号合成。所有测试信号均使用全数字架构开发,然后以数字形式用于调制输出 RF。测试信号不会转换为模拟信号来调制 RF,这确保了 PASS II 提供高保真度、准确、无伪影的测试信号。测试信号以模拟形式提供,用于直接声学处理器输入和听觉监控。直接数字合成 (DDS) RF 发生器产生 RF 输出。DSP 产生包含所需频率和所需信号输出的数字数据,并直接输入 RF 合成设备以产生信号。基带和 RF 频率的产生精度在 0.003% 以内
高保真度的单量子比特和多量子比特操作构成了量子信息处理的基础。这种保真度基于以极其相干和精确的方式耦合单量子比特或双量子比特的能力。相干量子演化的必要条件是驱动这些跃迁的高度稳定的本振。在这里,我们研究了快速噪声(即频率远高于本振线宽的噪声)对离子阱系统中单量子比特和双量子比特门保真度的影响。我们分析并测量了快速噪声对单量子比特操作的影响,包括共振π旋转和非共振边带跃迁。我们进一步用数字方式分析了快速相位噪声对 Mølmer-Sørensen 双量子比特门的影响。我们找到了一种统一而简单的方法,通过量子比特响应频率下的噪声功率谱密度给出的单个参数来估计所有这些操作的性能。虽然我们的分析侧重于相位噪声和离子阱系统,但它也适用于其他快速噪声源以及其他量子比特系统,在这些系统中,自旋类量子比特通过共同的玻色子场耦合。我们的分析可以帮助指导量子硬件平台和门的设计,提高它们对容错量子计算的保真度。
我们提出了一种硬件架构和协议,用于连接光学腔内的许多局部量子处理器。该方案与捕获离子或里德堡阵列兼容,并通过在腔内进行单光子传输来分配纠缠,从而实现任意两个量子比特之间的传送门。即使对于中等质量的腔,Heralding 也能实现高保真度纠缠。对于由线性链中的捕获离子组成的处理器,具有实际参数的单个腔每隔几 μs 就能成功传输光子,将链间纠缠速率提高到现有方法的 2 个数量级以上,并消除了扩展捕获离子系统的主要瓶颈。对于一个现实场景,我们概述了如何在 200 μs 内实现 20 条离子链(总共包含 500 个量子比特)的任意对任意纠缠,保真度和速率仅受局部操作和离子读出的限制。对于由里德堡原子组成的处理器,我们的方法可以完全连接数千个中性原子。我们的架构所提供的连接性可使用多个重叠腔扩展到数万个量子比特,从而扩展嘈杂的中尺度量子时代算法和汉密尔顿模拟的能力,并实现更强大的高维纠错方案。
基于 CRISPR/Cas9 的碱基编辑工具可实现精确的基因组安装,并为基因治疗带来巨大希望,而 Cas9 核酸酶的大尺寸、其对特定原间隔区相邻基序 (PAM) 序列的可靠性以及靶位偏好限制了碱基编辑工具的广泛应用。在这里,我们通过将胞嘧啶脱氨酶与来自 Streptococcus_gordonii_str._Challis_substr._CH1 (ancSgo-BE4) 和 Streptococcus_thermophilus_LMG_18311 (ancSth1a-BE4) 的两个紧凑的密码子优化的 Cas9 直系同源物融合来生成两个胞嘧啶碱基编辑器 (CBE),它们比化脓性链球菌 (SpCas9) 小得多,分别识别 NNAAAG 和 NHGYRAA PAM 序列。这两种 CBE 在胞嘧啶碱基编辑中都表现出高活性、高保真度、不同的编辑窗口和低副产物,并且在哺乳动物细胞中 DNA 和 RNA 脱靶活性极小。此外,在我们测试的靶位点上,这两种编辑器都表现出与两种基于 SpCas9 工程变体(SpCas9-NG 和 SpRY)的 CBE 相当或更高的编辑效率,它们与 ancSgo-BE4 或 ancSth1a-BE4 的 PAM 序列完美匹配。此外,我们通过 ancSgo-BE4 和 ancSth1a-BE4 成功生成了两种在 Ar 基因处带有临床相关突变的小鼠模型,它们在创始小鼠中表现出雄激素不敏感综合征和/或发育致死性。因此,这两种新型 CBE 拓宽了碱基编辑工具包,分别扩大了靶向范围和窗口,以实现有效的基因修饰和应用。
1) 空中运输建模,包括运输飞机内部的货物运动限制 a。地板摩擦和约束 b。重力下降模型 c。 飞机坡道的弹射模型 2) 弹射座椅模型包括: a。 火箭/弹射器性能 b。 DRI 和类似的暴露计算 3) 重要的货物模型,包括: a。高端空气动力学模型,包括多个马赫数和 AOA 表 b。用于重新定位模拟的多个线束连接点模型 c。 与其他客户(如 NASA)的空气动力学数据库非常接近的空气动力学数据库 4) 轨迹重启功能大大减少了使用多个降落伞完成轨迹的工作量 5) 通过完成基本 DCLDYN 工具的外循环进行蒙特卡罗分析 6) 提供额外功能的重要变体,包括: a。客户可交付模拟,旨在附加到客户模拟 i。完全 6 自由度降落伞 ii。从客户模拟调用,为飞行模型提供高保真降落伞模型 b。 重新定位变体,在集群汇合和车辆之间提供高保真度的降落伞安全带 i。包括安全带释放和阻尼器输入通道,用于研究动态机动和潜在控制。7) 使用 FEA 工具,适当完成上述任务 a。降落伞的刚性和柔性表示之间的差异
uke.edu 摘要 — 基于代理的建模技术已用于航空航天领域的各种环境。对于这些模型,存在各种各样的潜在用户,他们拥有的领域知识范围从很少(例如休闲游戏玩家)到很高(例如学术或专业研究人员),每个人都有不同的兴趣和目标。这些模型既可以描述复杂系统的表示,有助于解释历史行为和结果,也可以帮助对未来系统架构进行前瞻性分析。因此,基于代理的模型的使用将特别有助于规划未来的无人系统。这种基于代理的模拟引擎的一个关键问题是创建一个交互环境的复杂性,该环境可以跨越用户专业知识差距并允许直观和有用的交互,同时保持信息的高保真度。为了实现一个可以跨越领域和建模知识差距的交互环境,我们建议将给定的基于代理的模拟的设置、管理和可视化提炼为认知上简单的组件,使具有不同程度的专业知识的用户能够有效地理解和管理模拟。这样的环境应该允许所有技能水平的用户建立各种模型和假设,并了解结果。为此,我们提出了一个交互设计框架,该框架建立在海军航空母舰甲板飞行甲板发射操作的现有基于代理的模型之上。在本文中,我们将讨论设计框架如何影响交互环境的设计,以及由此产生的交互环境如何涵盖代表不同主题专业知识水平的用户组。
本研究调查了在飞机开发过程中概念阶段就已纳入工业级遗留系统仿真模型的影响。通过一种完全基于开放标准的遗留模型 (LM) 集成新方法,将两个不同保真度级别的系统仿真模型(一个基于手册方法,代表低保真度仿真模型)纳入飞机尺寸框架,另一个基于来自类似设计的先前飞机项目的遗留数据,被认为具有更高的保真度。根据机翼参考面积和发动机尺寸对最终的飞机设计进行评估。根据集成和开发工作以及执行时间对 LM 和手册模型 (HM) 进行评估。研究发现,模型保真度的选择会影响飞机的最终设计,低保真度的 HM 产生的设计比高保真度的 LM 具有更大的机翼参考面积和发动机尺寸。结果评估表明,HM 比 LM 更耗时。因此,尽管 LM 的集成工作比 HM 的开发时间更长,但 LM 产生的结果信心增加的好处超过了 LM 集成包装器开发的初始成本。此外,一旦构建了 LM 集成包装器,与其他具有相同接口的 LM 的集成类似于“即插即用”,允许更彻底的设计空间探索,尽管仅限于模型的操作域 (OD)。就执行时间而言,基于 LM 的优化过程是基于 HM 的优化过程的两倍。但是,执行时间足够短,不会成为概念阶段 LM 纳入的障碍。