摘要 不同位置之间的量子信息传输是许多量子信息处理任务的关键。尽管单个量子比特状态的传输已被广泛研究,但多体系统配置的传输迄今为止仍然难以捉摸。我们解决了传输 n 个相互作用的量子比特的状态的问题。呈指数增长的希尔伯特空间维数和相互作用的存在都显著增加了实现高保真度传输的复杂性。通过使用随机矩阵理论工具并利用量子动力学映射的形式,我们推导出针对 n 个相互作用的量子比特的任意量子态传输协议的保真度的平均值和方差的一般表达式。最后,通过在自旋链中采用弱耦合方案,我们获得了三和四个相互作用的量子比特高保真度传输的明确条件。
我们从理论上研究了在二维微阱结构中使用快速脉冲双量子比特门进行离子捕获量子计算。在一维中,这种快速门在最近邻居之间使用时是最佳的,并且我们研究了将其推广到二维几何结构。我们证明,快速脉冲门能够以比捕获周期更快的速度在相邻陷阱中的离子之间实现高保真度纠缠操作,并且实验证明了激光重复率。值得注意的是,我们发现,在不增加门持续时间的情况下,即使在具有数百个离子的大型阵列中也可以实现高保真度门。为了证明该建议的实用性,我们研究了这些门在 40 模式费米-哈伯德模型的数字模拟中的应用。这也说明了为什么连接任意离子对所需的较短门链使这种几何结构非常适合大规模计算。
在 ARC DECRA 项目中,将通过开发基于人类感知的新型 MCA 并利用先进的人工智能技术和最优控制理论来克服现有驾驶和飞行模拟器的这些关键缺陷。新型 MCA 能够考虑与人类感知相关的因素,并将显著提高模拟器运动保真度并消除晕动症。预计该研究成果将为澳大利亚研究界和行业带来巨大利益,从而将低成本、安全且高保真度的模拟器广泛用于培训、性能评估和虚拟原型设计。
RWT 的压力环 1 的安装方式与 LSWT 类似,即它们位于收缩段的前后。这些压力环从未校准过,因此迄今为止未在任何测试中使用过。RWT 测试段的横截面形状在几何上与 LSWT 相似,并且两个风洞具有相同的收缩率。因此,对 RWT 压力环进行了与 [2] 和 [3] 类似的校准技术。然而,[2] 和 [3] 发现校准因子不会随着测试段内的流向位置而发生显著变化。此外,RWT 通常不用于高保真度测试,并且模型通常不会跨越测试段的长度。因此,RWT 内的校准因子仅在一个中心线站获得,适用于两种情况:
基于高斯过程 (GP) 的替代模型具有固有能力,可以捕捉数字孪生框架 Kobayashi 等人 [2022a,b]、Rahman 等人 [2022]、Khan 等人 [2022] 的建模和仿真组件中存在的由于数据有限、数据缺失、数据缺失和数据不一致(噪声/错误数据)而引起的异常,特别是对于事故容错燃料 (ATF) 概念。但是,当我们拥有有限的高保真度(实验)数据时,GP 不会非常准确。此外,使用 GP 应用高维函数(>20 维函数)来近似预测具有挑战性。此外,噪声数据或包含错误观测值和异常值的数据是高级 ATF 概念面临的主要挑战。此外,控制微分方程对于长期 ATF 候选者来说是经验性的,数据可用性是一个问题。基于物理的多保真度克里金法 (MFK) 可用于识别和预测所需的材料特性。MFK 特别适用于低保真度物理(近似物理)和有限的高保真度数据 - 这是 ATF 候选者的情况,因为数据可用性有限。本章探讨了该方法,并介绍了其在 ATF 实验热导率测量数据中的应用。MFK 方法对少量无法通过传统克里金法建模的数据显示出其重要性。用这种方法构建的数学模型可以轻松连接到后期分析,例如不确定性量化和敏感性分析,并有望应用于基础研究和广泛的产品开发领域。本章的总体目标是展示可以嵌入 ATF 数字孪生系统的 MFK 替代品的能力。
RSA NetWitness Detect AI 的云架构为分析师提供了直接价值。云的弹性、可扩展性和处理能力推动 RSA NetWitness Detect AI 的无监督机器学习算法应用于广泛的用例,包括检测内部威胁、暴力破解身份验证和机器操作活动。RSA NetWitness Detect AI 将其专有的机器学习算法与创新的风险评分模型相结合,旨在通过仅对高保真度和高优先级威胁发出警报来减轻分析师的警报疲劳。这可以加快攻击调查和响应时间,并推动更高效、更全面的事件管理。
RWT 的压力环 1 的安装方式与 LSWT 类似,即分别位于收缩段之前和之后。这些压力环从未校准过,因此迄今为止未在任何测试中使用过。RWT 测试段的横截面形状在几何上与 LSWT 相似,并且两个风洞具有相同的收缩率。因此,对 RWT 压力环执行了与 [ 2 ] 和 [ 3 ] 类似的校准技术。然而,[ 2 ] 和 [ 3 ] 发现校准因子不会随着测试段内的流向位置而发生显著变化。此外,RWT 通常不用于高保真度测试,并且模型通常不会跨越测试段的长度。因此,RWT 内的校准因子仅在一个中心线站获得,适用于两种情况:
摘要:快速成型技术 (RPT) 是一种可行的替代生产方法,通过创建要构建产品的数学 (CAD) 模型,制造业可以减少时间和成本。本综述的主要目的是为研究人员提供一个平台,让他们了解哪些快速成型材料和工艺足以构建风洞模型,以及这些模型是否满足亚音速测试的结构要求,同时仍具有以低预算生成用于教育目的 (初步设计研究) 的精确空气动力学数据所需的高保真度。随后,本文讨论了航空航天工业中快速成型的时间缩短和成本效益。关键词:航空航天、成本效益、时间缩短、快速成型技术、RPT 模型和风洞测试。
摘要:快速成型技术 (RPT) 是一种可行的替代生产方法,通过创建要构建产品的数学 (CAD) 模型,制造业可以减少时间和成本。本综述的主要目的是为研究人员提供一个平台,让他们了解哪些快速成型材料和工艺足以构建风洞模型,以及这些模型是否满足亚音速测试的结构要求,同时仍具有以低预算生成用于教育目的 (初步设计研究) 的精确空气动力学数据所需的高保真度。随后,本文讨论了航空航天工业中快速成型的时间缩短和成本效益。关键词:航空航天、成本效益、时间缩短、快速成型技术、RPT 模型和风洞测试。
研究了有限尺寸开放费米-哈伯德链中的长距离纠缠以及端到端量子隐形传态。我们展示了费米-哈伯德模型基态支持最大长距离纠缠的特性,这使其可以作为高保真度长距离量子隐形传态的量子资源。我们确定了创建可扩展长距离纠缠的物理特性和条件,并分析了其在库仑相互作用和跳跃幅度影响下的稳定性。此外,我们表明协议中测量基的选择会极大地影响量子隐形传态的保真度,我们认为通过选择反映量子信道显著特性的适当基,即哈伯德投影测量,可以实现完美的信息传输。