Imec 的 snapscan VNIR 测距系统是高光谱成像应用研究的重大突破。只需几百毫秒,即可创建具有无可比拟的信噪比和空间与光谱分辨率的高质量超立方体数据集。snapscan 演示套件可实现最高质量的应用研究,同时仍保持用户友好性。它集成了所需的所有关键组件:光谱图像传感器、相机、光学元件、压电扫描、主动冷却系统、照明、三脚架支架和 HSImager:imec 研究团队开发的最先进的高光谱成像软件。
免责声明 - 本信息按“原样”提供,不作任何陈述或保证。Imec 是 IMEC International(根据比利时法律成立的法人实体,名称为“stichting van openbaar nut”)、imec Belgium(由弗兰德政府支持的 IMEC vzw)、imec the Dutch(Stichting IMEC Nederland,由荷兰政府支持的 Holst Centre 的一部分)、imec Taiwan(IMEC Taiwan Co.)、imec China(IMEC Microelectronics (Shanghai) Co. Ltd.)、imec India(Imec India Private Limited)、imec Florida(IMEC USA 纳米电子设计中心)活动的注册商标。
摘要:现代高通量纳米图案化技术(如纳米压印光刻技术)使得在大面积基底(cm 2 至 m 2 规模)上制造纳米结构阵列(尺寸为 10 至 100 纳米的特征)成为可能,例如硅晶片、玻璃片和柔性卷对卷网。制造这种大面积纳米结构阵列 (LNA) 的能力创造了广阔的设计空间,实现了广泛的应用,包括光学设备(例如线栅偏振器、透明导体、彩色滤光片和抗反射表面)以及电子元件的构建块(例如超级电容器、传感器和存储器架构)。然而,现有的计量方法将难以与制造方法一起扩展。例如,扫描电子显微镜 (SEM) 和原子力显微镜 (AFM) 具有微米级视场 (FOV),这妨碍了对以每分钟平方米的速度制造的 LNA 进行全面特性分析。散射测量方法具有更大的 FOV(通常为几百微米到几毫米),但传统散射测量系统一次只测量一个点的样品,这也使得它们对于大规模 LNA 制造来说太慢。在这项工作中,我们展示了使用高光谱成像对传统光谱散射测量方法进行并行化,将该技术的吞吐量提高了 106-107 倍。我们通过使用高光谱成像和反射光谱的逆向建模来展示这种方法,以微米级空间分辨率获得毫米和厘米级 Si 纳米柱阵列结构的三维几何数据。这项工作表明,可以对各种 LNA 进行几何测量,并有可能在大面积上实现高速测量,这对于未来的 LNA 制造至关重要。
摘要 —卷积神经网络(CNN)在高光谱图像表示方面表现出色,并在高光谱图像分类中取得了良好的效果。然而,传统的 CNN 模型只能对具有固定大小和权重的规则方形图像区域进行卷积,因此,它们不能普遍适应具有各种对象分布和几何外观的不同局部区域。因此,它们的分类性能还有待提高,特别是在类边界方面。为了弥补这一缺点,我们考虑采用最近提出的图卷积网络(GCN)进行高光谱图像分类,因为它可以对任意结构的非欧几里得数据进行卷积,适用于由图拓扑信息表示的不规则图像区域。与常用的在固定图上工作的 GCN 模型不同,我们使图能够动态更新
本文介绍了符合空间数据系统咨询委员会 (CCSDS) 121.0-B-2 和 CCSDS 123.0-B-1 无损卫星图像压缩标准的两个知识产权 (IP) 核的建模、设计和实现。CCSDS 121.0-B-2 描述了一种基于 Rice 自适应编码的无损通用压缩器。CCSDS 123.0-B-1 标准描述了一种专为高效机载高光谱和多光谱图像压缩而设计的无损算法,它基于预测和基于熵的编码结构。后者提供了两种选项:样本自适应和块自适应编码器,对应于 CCSDS 121.0-B-2 算法。这些 IP 核被设计为独立的压缩器,但由于专用接口,它们可以轻松地以即插即用的方式组合在一起使用。此外,还提供了用于配置和外部存储器访问的标准接口。设计过程包括考虑几种不同的硬件架构,以便同时最大化吞吐量并优化机载资源的要求。这两个 IP 都符合标准中考虑的高可配置性。获得的 VHDL 代码完全独立于技术,因此可用于针对太空环境中感兴趣的任何现场可编程门阵列 (FPGA) 或 ASIC,旨在在卫星中高效执行压缩,尽管固有的
在精准农业、林业管理、安全和监控等应用中,在无人机 (UAV) 上安装多个高光谱成像传感器的能力至关重要。imec UAV 平台由强大的嵌入式计算平台支持,该平台具有 NVIDIA Jetson GPU、集成存储、通过标准无人机万向节接口(如(但不限于)DJI Matrice 600)实现无线和有线控制连接。该 UAV 系统解决方案的设计理念是使最终用户能够从基于无人机的系统实时获取、处理和以视频速率下载应用数据。
地球同步成像傅里叶变换光谱仪 (GIFTS) 是为 NASA 新千年计划 (NMP) 地球观测-3 (EO-3) 任务开发的。本文讨论了 GIFTS 测量要求以及 GIFTS 传感器为提供所需的系统性能而使用的技术。还介绍了最近完成的仪器校准的初步结果。GIFTS NMP 任务挑战是展示新兴的传感器和数据处理技术,以使用大气成像和高光谱探测方法彻底提高气象观测能力和预报准确性。GIFTS 传感器是一种具有可编程光谱分辨率和空间场景选择的成像 FTS,允许近实时地交换辐射测量精度和大气探测精度以达到区域覆盖。通过使用低温迈克尔逊干涉仪和两个大面积红外焦平面探测器阵列实现系统灵敏度。由于资金限制,GIFTS 传感器模块作为工程演示单元完成,可以升级以获得飞行资格。通过热真空测试和严格的红外校准活动,已成功证明满足下一代地球同步探测要求的能力。
免责声明 - 本信息按“原样”提供,不作任何陈述或保证。Imec 是 IMEC International(根据比利时法律成立的法人实体,名称为“stichting van openbaar nut”)、imec Belgium(由弗兰德政府支持的 IMEC vzw)、imec the Dutch(Stichting IMEC Nederland,由荷兰政府支持的 Holst Centre 的一部分)、imec Taiwan(IMEC Taiwan Co.)、imec China(IMEC Microelectronics (Shanghai) Co. Ltd.)、imec India(Imec India Private Limited)、imec Florida(IMEC USA 纳米电子设计中心)活动的注册商标。
摘要 有多种原因使得脑癌识别成为神经外科医生在手术过程中的一项艰巨任务。由于脑肿瘤具有弥漫性,会渗透到周围的健康组织中,因此外科医生的肉眼有时不足以准确描绘脑肿瘤的位置和扩散范围。因此,为了改善手术效果并提高患者的生活质量,提供准确癌症界定的支持系统至关重要。作为欧洲“高光谱成像癌症检测”(HELICoiD)项目的一部分,开发的脑癌检测系统满足了这一要求,它利用了一种适合医学诊断的非侵入性技术:高光谱成像 (HSI)。该系统必须满足的一个关键约束是提供实时响应,以免延长手术时间。表征高光谱图像的大量数据以及分类系统执行的复杂处理使得高性能计算 (HPC) 系统对于提供实时处理至关重要。本工作中开发的最有效的实现利用了图形处理单元(GPU)技术,能够在不到三秒的时间内对数据库中最大的图像(最坏情况)进行分类,基本上满足了外科手术 1 分钟的实时约束,成为在不久的将来实现高光谱视频处理的潜在解决方案。
Imec 的 snapscan 系统是高光谱成像应用研究的重大突破。只需几百毫秒,即可创建具有无可比拟的信噪比和空间与光谱分辨率的高质量超立方体数据集。snapscan 演示套件可实现最高质量的应用研究,同时仍保持用户友好性。它集成了所需的所有关键组件:光谱图像传感器、相机、光学元件、压电扫描、主动冷却系统、照明、三脚架支架和 imec 最先进的高光谱成像软件:snapscan 软件,这是 imec 团队开发的一款先进的高光谱成像软件。