1。Carslake H,Argo CM,Pinchbeck G等。对小马的三种草料的胰岛症和糖性作用反应。兽医J。 2018; 235:83-89。 2。 LindåseS,Nostell K,SöderJ,BröjerJ。 基于口服糖测试和尿糖血糖高胰岛素夹在马中β细胞反应与胰岛素敏感性之间的关系。 J VET Intern Med。 2017; 31:1541-1550。 3。 Patterson-Kane JC,Karikoski NP,McGowan CM。 范式在理解马层炎的情况下发生了变化。 兽医J。 2018; 231:33-40。 4。 Durham AE,Frank N,McGowan CM等。 eceim关于马代谢综合征的共识。 J VET Intern Med。 2019; 33:335-349。 5。 Legere RM,Taylor DR,Davis JL等。 吡格列酮对等式中口服糖后高分子脂联素浓度和胰岛素反应的药效学作用。 Jequine Vet。 2019; 82:102797。 6。 Tinworth KD,波士顿RC,Harris PA,Sillence MN,Raidal SL,Noble GK。 口服二甲双胍对胰岛素耐药性小马中胰岛素敏感性的影响。 兽医J。 2012; 191:79-84。 7。 Colmer SF,Adams AA,Adam E等。 用二甲双胍预先给药对胰岛素失调马中口服糖的反应的影响。 马兽医J。 2023; doi:10.1111/evj.13979。 8。 Deeks Ed,Scheen AJ。 canagliflozin:2型糖尿病的评论。 药物。 9。兽医J。2018; 235:83-89。 2。 LindåseS,Nostell K,SöderJ,BröjerJ。 基于口服糖测试和尿糖血糖高胰岛素夹在马中β细胞反应与胰岛素敏感性之间的关系。 J VET Intern Med。 2017; 31:1541-1550。 3。 Patterson-Kane JC,Karikoski NP,McGowan CM。 范式在理解马层炎的情况下发生了变化。 兽医J。 2018; 231:33-40。 4。 Durham AE,Frank N,McGowan CM等。 eceim关于马代谢综合征的共识。 J VET Intern Med。 2019; 33:335-349。 5。 Legere RM,Taylor DR,Davis JL等。 吡格列酮对等式中口服糖后高分子脂联素浓度和胰岛素反应的药效学作用。 Jequine Vet。 2019; 82:102797。 6。 Tinworth KD,波士顿RC,Harris PA,Sillence MN,Raidal SL,Noble GK。 口服二甲双胍对胰岛素耐药性小马中胰岛素敏感性的影响。 兽医J。 2012; 191:79-84。 7。 Colmer SF,Adams AA,Adam E等。 用二甲双胍预先给药对胰岛素失调马中口服糖的反应的影响。 马兽医J。 2023; doi:10.1111/evj.13979。 8。 Deeks Ed,Scheen AJ。 canagliflozin:2型糖尿病的评论。 药物。 9。2018; 235:83-89。2。LindåseS,Nostell K,SöderJ,BröjerJ。基于口服糖测试和尿糖血糖高胰岛素夹在马中β细胞反应与胰岛素敏感性之间的关系。J VET Intern Med。2017; 31:1541-1550。3。Patterson-Kane JC,Karikoski NP,McGowan CM。范式在理解马层炎的情况下发生了变化。 兽医J。 2018; 231:33-40。 4。 Durham AE,Frank N,McGowan CM等。 eceim关于马代谢综合征的共识。 J VET Intern Med。 2019; 33:335-349。 5。 Legere RM,Taylor DR,Davis JL等。 吡格列酮对等式中口服糖后高分子脂联素浓度和胰岛素反应的药效学作用。 Jequine Vet。 2019; 82:102797。 6。 Tinworth KD,波士顿RC,Harris PA,Sillence MN,Raidal SL,Noble GK。 口服二甲双胍对胰岛素耐药性小马中胰岛素敏感性的影响。 兽医J。 2012; 191:79-84。 7。 Colmer SF,Adams AA,Adam E等。 用二甲双胍预先给药对胰岛素失调马中口服糖的反应的影响。 马兽医J。 2023; doi:10.1111/evj.13979。 8。 Deeks Ed,Scheen AJ。 canagliflozin:2型糖尿病的评论。 药物。 9。范式在理解马层炎的情况下发生了变化。兽医J。 2018; 231:33-40。 4。 Durham AE,Frank N,McGowan CM等。 eceim关于马代谢综合征的共识。 J VET Intern Med。 2019; 33:335-349。 5。 Legere RM,Taylor DR,Davis JL等。 吡格列酮对等式中口服糖后高分子脂联素浓度和胰岛素反应的药效学作用。 Jequine Vet。 2019; 82:102797。 6。 Tinworth KD,波士顿RC,Harris PA,Sillence MN,Raidal SL,Noble GK。 口服二甲双胍对胰岛素耐药性小马中胰岛素敏感性的影响。 兽医J。 2012; 191:79-84。 7。 Colmer SF,Adams AA,Adam E等。 用二甲双胍预先给药对胰岛素失调马中口服糖的反应的影响。 马兽医J。 2023; doi:10.1111/evj.13979。 8。 Deeks Ed,Scheen AJ。 canagliflozin:2型糖尿病的评论。 药物。 9。兽医J。2018; 231:33-40。 4。 Durham AE,Frank N,McGowan CM等。 eceim关于马代谢综合征的共识。 J VET Intern Med。 2019; 33:335-349。 5。 Legere RM,Taylor DR,Davis JL等。 吡格列酮对等式中口服糖后高分子脂联素浓度和胰岛素反应的药效学作用。 Jequine Vet。 2019; 82:102797。 6。 Tinworth KD,波士顿RC,Harris PA,Sillence MN,Raidal SL,Noble GK。 口服二甲双胍对胰岛素耐药性小马中胰岛素敏感性的影响。 兽医J。 2012; 191:79-84。 7。 Colmer SF,Adams AA,Adam E等。 用二甲双胍预先给药对胰岛素失调马中口服糖的反应的影响。 马兽医J。 2023; doi:10.1111/evj.13979。 8。 Deeks Ed,Scheen AJ。 canagliflozin:2型糖尿病的评论。 药物。 9。2018; 231:33-40。4。Durham AE,Frank N,McGowan CM等。eceim关于马代谢综合征的共识。J VET Intern Med。2019; 33:335-349。5。Legere RM,Taylor DR,Davis JL等。吡格列酮对等式中口服糖后高分子脂联素浓度和胰岛素反应的药效学作用。Jequine Vet。2019; 82:102797。6。Tinworth KD,波士顿RC,Harris PA,Sillence MN,Raidal SL,Noble GK。口服二甲双胍对胰岛素耐药性小马中胰岛素敏感性的影响。兽医J。 2012; 191:79-84。 7。 Colmer SF,Adams AA,Adam E等。 用二甲双胍预先给药对胰岛素失调马中口服糖的反应的影响。 马兽医J。 2023; doi:10.1111/evj.13979。 8。 Deeks Ed,Scheen AJ。 canagliflozin:2型糖尿病的评论。 药物。 9。兽医J。2012; 191:79-84。 7。 Colmer SF,Adams AA,Adam E等。 用二甲双胍预先给药对胰岛素失调马中口服糖的反应的影响。 马兽医J。 2023; doi:10.1111/evj.13979。 8。 Deeks Ed,Scheen AJ。 canagliflozin:2型糖尿病的评论。 药物。 9。2012; 191:79-84。7。Colmer SF,Adams AA,Adam E等。用二甲双胍预先给药对胰岛素失调马中口服糖的反应的影响。马兽医J。 2023; doi:10.1111/evj.13979。 8。 Deeks Ed,Scheen AJ。 canagliflozin:2型糖尿病的评论。 药物。 9。马兽医J。2023; doi:10.1111/evj.13979。8。Deeks Ed,Scheen AJ。 canagliflozin:2型糖尿病的评论。 药物。 9。Deeks Ed,Scheen AJ。canagliflozin:2型糖尿病的评论。药物。9。2017; 77:1577-1592。 Martinez R,Al-Jobori H,Ali AM等。 内源性葡萄糖产生和荷尔蒙变化,以响应canagliflozin和liraglutide组合疗法。 糖尿病。 2018; 67:1182-1189。2017; 77:1577-1592。Martinez R,Al-Jobori H,Ali AM等。内源性葡萄糖产生和荷尔蒙变化,以响应canagliflozin和liraglutide组合疗法。糖尿病。2018; 67:1182-1189。2018; 67:1182-1189。
个人简历 – 范红友博士 现地址:桑迪亚国家实验室,先进材料实验室,1001 University Blvd. SE,阿尔伯克基,新墨西哥州 87106,电话:(505) 272-7128;电子邮箱:hfan@sandia.gov 现职位:1. 桑迪亚国家实验室杰出技术人员,新墨西哥州阿尔伯克基 2. 新墨西哥大学化学与生物工程系微工程材料中心研究教授,新墨西哥州阿尔伯克基 教育背景:吉林大学化学学士,1990 年 中国科学院高分子科学硕士,1995 年 新墨西哥大学化学工程博士,2000 年 专业经历:2015 年至今 桑迪亚国家实验室杰出技术人员,新墨西哥州阿尔伯克基2007 – 2014 技术人员首席成员,桑迪亚国家实验室,新墨西哥州阿尔伯克基。2002 – 2006 技术人员高级成员,桑迪亚国家实验室,新墨西哥州阿尔伯克基。2004 – 至今 研究教授,新墨西哥大学化学与生物工程系微工程材料中心,新墨西哥州阿尔伯克基。2000 – 2002 博士后研究员,桑迪亚国家实验室,新墨西哥州阿尔伯克基。荣誉和奖项:2015 年材料研究学会 (MRS) Fred Kavli 杰出讲座奖
1. 简介 研究生课程为 BEng/BSc(Eng) 毕业生提供 BEng(Hons) (化学工程) 学位,为 BSc 或 BTech 毕业生提供 BSc(Hons)(应用科学) 学位。荣誉课程以授课为主。硕士课程紧接着荣誉课程,包括一篇基于研究的论文。本传单只是官方年鉴的补充。 2. 课程大纲 报读荣誉学位的候选人必须至少修完 128 个课程学分。选择攻读硕士学位的候选人还必须完成 128 学分的论文。为了专攻高分子材料科学与工程,必须从表中列出的 32 个学分模块中选择至少 96 个课程学分。候选人可以与系主任协商,从工程学院的其他课程中选择完成学位所需的其他课程学分。 3. 研究 我们的研究重点是化学产品和工艺设计。研究领域包括碳材料、氟聚合物和化合物、聚合物纳米复合材料表面活性剂和烟火技术。具体项目由核能、能源、化学和加工工业的需求决定。因此,对于准备从事工业赞助商建议的研究课题的选定硕士生和博士生,可能会提供适当的奖学金。此类奖学金是在竞争的基础上颁发的。请访问我们的网站 ( www.up.ac.za/iam ) 了解当前的研究活动和新机会。
表1。VGI工作组的四个阶段13表2。用例评估框架的维度18表3。TOP-25根据本田Value-metric 25表4的排名LDV用例。TOP-25根据本田Value-metric 26表5。v2g用用例出现在高分子集中27表6。策略类别28表7。策略建议的分类29表8。最强协议的短期政策建议31表9。与良好协议的短期政策建议32表10。多数中立的短期政策建议34表11。多数分歧的短期政策建议36表12。与已经进行的政策行动有关的建议38表13。中期和长期政策建议39表14。建议将VGI与其他DERS进行比较的方法40图1。LDV用例20图2。2022年全州范围的总收益分配21图3。平均成本得分的分布22图4。平均得分的分布,以实施易于/风险22图5。LDV用例平均得分总收益按应用程序24图6。LDV用例的扇区出现在所有子集中24图7。在所有子集中出现的LDV用例的应用24图8。所有V2G用例的扇区26图9.所有V2G用例的应用26图10。按策略类别对政策建议的分类30
摘要。Batio 3是钙钛矿结构的最重要功能材料之一,广泛用于电子工业中。但是,Batio 3的介电介电常数仍然相对较低,这极大地限制了其在具有巨大介电介电常数的超材料中的实际应用。在这项工作中,(Ba 100 x Sr X)(Ti 100 Y Zr Y)O 3复合陶瓷是通过实心烧结方法制造的。令人惊讶的是,(ba 100 x Sr x)(ti 100 y zr y)o 3复合陶瓷材料的介电性能分别依赖于A位置和B位置的Sr 2+和Zr 4+的占用。因此,通过调整SRTIO 3和BAZRO 3的掺杂量,介电介电常数为28287(65°C,1 kHz),以及在(ba 90 sr 10)(ba 90 sr 10)中的高分子分解强度为84.47 kV/cm,是在214%的范围内,是214%的13%and 13%,是214%的13%。 (BA 99 SR 1)(Ti 99 Zr 1)O 3复合陶瓷。此外,通过有限的元素模拟确定了介电介电常数显着增加的原因,并探索了复合陶瓷材料的分解机制。这项工作提供了一种构建高介电介电常数复合陶瓷的简便方法,即(BA 100 X SR X)(Ti 100 Y Zr Y)O 3复合陶瓷在电子和静电储能存储电容器方面具有广泛的应用前景。
1 魏思奇 , 余双舰 , 吴思武 , 唐征海 , 郭宝春 , 张立群 .基于功能性橡胶颗粒集成的宽温域橡胶阻尼材料 .高分子学报 , 2024 , 55(3), 338 - 348.2 Sun, T. L.; Gong, X. L.; Jiang, W. Q.; Li, J. F.; Xu, Z.B.; Li, W. H. Study on the damping properties of magnetorheological elastomers based on cis -polybutadiene rubber.Polym.Test , 2008 , 27(4), 520 - 526.3 Prasertsri, S.; Rattanasom, N. Mechanical and damping properties of silica/natural rubber composites prepared from latex system.Polym.Test , 2011 , 30(5), 515 - 526.4 Liu, C.; Fan, J.; Chen, Y.Design of regulable chlorobutyl rubber damping materials with high-damping value for a wide temperature range.Polym.Test , 2019 , 79, 106003.5 Soleimanian, S.; Petrone, G.; Franco, F.; De Rosa, S.; Kołakowski, P. Semi-active vibro-acoustic control of vehicle transmission systems using a metal rubber-based isolator.Appl.Acoust., 2024 , 217, 109861.6 唐征海 , 郭宝春 , 张立群 , 贾德民 .石墨烯 / 橡胶纳米复合材料 .高分子学报 , 2014 , (7), 865 - 877.7 Xia, S.; Chen, Y.; Tian, J.; Shi, J.; Geng, C.; Zou, H.; Liang, M.; Li, Z.Superior low-temperature reversible adhesion based on bio-inspired microfibrillar adhesives fabricated by phenyl containing polydimethylsiloxane elastomers.Adv.Funct.Mater., 2021 , 31(26), 2101143.8 Zhu, Q.; Wang, Z.; Zeng, H.; Yang, T.; Wang, X.Effects of graphene on various properties and applications of silicone rubber and silicone resin.Compos.Part A: Appl.Sci.制造。,2021,142,106240。9刘z。 Shi,J。; Zhao,n。; Li,Z。通过环状三磷酸磷酸基碱催化的环环(CO)聚合物化,高分子量的高分子量聚二乙基硅氧烷和随机聚二甲基氧烷-Co-二甲基硅氧烷)共硅氧烷。欧洲。polym。J.,2022,173,111280。10什叶,J。; Liu,Z。; Zhao,n。; Liu,s。; Li,Z。由三挥手有组织酶催化为明确定义的聚(二甲基硅氧烷)S催化的己二甲基甲硅氧烷的己二甲硅氧烷的控制环的聚合。大分子,2022,55(7),2844-2853。11 Rius-Bartra,J.M。; Ferrer-Serrano,n。; Agulló,n。; Borrós,S。高抗性有机硅橡胶减少了杨的模量。 介电硅橡胶的工业选择。 J. Appl。 polym。 SCI。 ,2023,140(37),E54405。 12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。 定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。 橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。11 Rius-Bartra,J.M。; Ferrer-Serrano,n。; Agulló,n。; Borrós,S。高抗性有机硅橡胶减少了杨的模量。介电硅橡胶的工业选择。J. Appl。polym。SCI。 ,2023,140(37),E54405。 12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。 定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。 橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。SCI。,2023,140(37),E54405。12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。 定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。 橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。12 Fradkin,D。G。; Foster,J.N。; Sperling,L。H。;托马斯,D。A。定量确定基于丙烯酸的互穿聚合物网络的阻尼行为。橡胶化学。 技术。 ,1986,59(2),255-262。 13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。 Macromolecules,2017,50(9),3532-3543。 14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。橡胶化学。技术。,1986,59(2),255-262。13 Zlatanic,A。; Radojcic,d。; Wan,X。M。; Messman,J.M。; Dvornic,P。R.抑制聚二甲基硅氧烷的结晶和含苯基共聚物中的链分支。Macromolecules,2017,50(9),3532-3543。14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。 J. Appl。 polym。 SCI。14 Shen,d。; Yuan,L。; Liang,G。; Gu,A。; Guan,Q.热耐药的光链接阻尼聚聚(氧化苯基) - 氟硅橡胶膜具有宽且高效的阻尼温度。J. Appl。polym。SCI。SCI。,2019,136(12),47231。15 Wang,Y。; Cao,R。; Wang,M。;刘x。 Zhao,X。; lu,y。;冯,a。; Zhang,L。通过阴离子共聚和随后的环氧化的苯基硅橡胶设计和合成苯基硅橡胶。 聚合物,2020,186,122077。 16 Zhu,L。; Zhao,s。;张,c。 Cheng,X。; Hao,J。; Shao,X。; Zhou,C。链结构对苯基硅橡胶阻尼特性和局部动力学的影响:实验和分子模拟的见解。 polym。 测试。 ,2021,93,106885。 17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。 研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。 J. Appl。 polym。 SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。15 Wang,Y。; Cao,R。; Wang,M。;刘x。 Zhao,X。; lu,y。;冯,a。; Zhang,L。通过阴离子共聚和随后的环氧化的苯基硅橡胶设计和合成苯基硅橡胶。聚合物,2020,186,122077。16 Zhu,L。; Zhao,s。;张,c。 Cheng,X。; Hao,J。; Shao,X。; Zhou,C。链结构对苯基硅橡胶阻尼特性和局部动力学的影响:实验和分子模拟的见解。 polym。 测试。 ,2021,93,106885。 17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。 研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。 J. Appl。 polym。 SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。16 Zhu,L。; Zhao,s。;张,c。 Cheng,X。; Hao,J。; Shao,X。; Zhou,C。链结构对苯基硅橡胶阻尼特性和局部动力学的影响:实验和分子模拟的见解。polym。测试。,2021,93,106885。17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。 研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。 J. Appl。 polym。 SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。17 Cui,H。; Jing,q。; Li,d。; Zhuang,t。;高,y。 ran,X。研究由硼端多硅氧烷修饰的有机硅橡胶的高温阻尼特性的研究。J. Appl。polym。SCI。 ,2023,140(1),E53262。 18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。 polym。 eng。 SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。SCI。,2023,140(1),E53262。18 ma,X。; Luo,c。; Zeng,H。;彭,Y。; Zhao,L。; Zhang,F。聚二氨基硅氧烷对具有双网络结构的有机硅橡胶泡沫的机械性能的影响。polym。eng。SCI。 ,2024,10.1002/pen.26663。 19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。 J. Appl。 polym。 SCI。 ,2011,119(5),2737-2741。SCI。,2024,10.1002/pen.26663。19张,c。; Pal,K。; BYEON,J.U。; Han,S.M。; Kim,J。K.关于硅橡胶/ EPDM阻尼材料的机械和热性能的研究。J. Appl。polym。SCI。 ,2011,119(5),2737-2741。SCI。,2011,119(5),2737-2741。
摘要:Polylactide(PLA)是具有不同商业应用的生物基合成聚酯。然而,由于PLA的加工性约束,抗性性和生物降解性,PLA被认为是不利的。因此,这项研究旨在基于高性手性对映射D-乳酸(D-LA)的聚酯(称为poly [d-la-co-(r)-3-羟基丁酸(3hb)](LAHB)(LAHB)的新型可生物降解修饰剂,以改善PLA的物理特性。高分子重量(HMW)LAHB是从大量的化学自动营养性杯状囊泡中合成的。通过使用含有葡萄糖的最小培养基并在C. necator中保留3HB均聚物的固有合成途径,从而实现了LAHB的量身定制过量生产,该培养基的固有合成途径可产生最高的产率,达到27 g/l/48 h。 LAHB的分子量实质上升高至1.1×10 6 g/mol,称为超高分子量(UHMW)LAHB。通过乳酸脱氢酶和丙酰基辅酶A转移酶变体的协同优化组合以及通过D-LA逃生途径的有效关闭来调节LAHB中的LA派系。PLA和两个选定的可生物降解的UHMW-/HMW-LAHB作为需求的可生物降解修饰符的组合允许提高PLA的加工性和影响抗性,同时保持透明度。LAHB的这些好处与传统生物基修饰剂(包括3HB基聚合物)的好处。关键字:杯状固定剂,聚乳酸,聚酯酸,聚羟基烷酸,LAHB,PLA,工程生物学,合成生物学■简介
随着深度钻孔的增长和井文件的复杂性,对生产地层的更完整和有效的开发的要求增加,这增加了各种并发症的风险。当前,基于经过修饰的天然聚合物(自然存在的化合物)和合成聚合物(SPS)的试剂是工业上创建的聚合物化合物的合成聚合物(SPS),被广泛用于防止钻探过程中的新兴并发症。但是,与经过修改的天然聚合物相比,SPS形成了一个高分子重量化合物的家族,这些家族通过进行化学聚合反应完全合成。sps在其设计中提供了很大的灵活性。此外,可以调整它们的大小和化学成分,以提供几乎所有钻孔流体功能目标的特性。可以根据化学成分,反应类型及其对加热的反应进行分类。但是,由于其结构特性,某些SP的成本高,温度和耐盐性水平较差,并且在温度达到130 C时开始降解。这些缺点阻止SP在某些中和深井中使用。因此,本综述介绍了历史发展,特征,制造方法,分类以及SPS在钻孔流体中的应用。详细解释了SPS作为添加剂对钻孔流体的贡献,以详细解释流变学,填充物的产生,携带插条,流体润滑性和粘土/页岩稳定性。还描述了将SP添加到钻孔流体中时所实现的机制,影响和进步。还讨论了SPS在钻探流体中部署及其优势和缺点时遇到的典型挑战。经济问题也影响SPS在钻探流体中的应用。因此,评估了最相关的SP的成本以及合成中使用的单体的成本。SPS在钻孔流体中的环境影响及其制造工艺以及旨在减少这些影响的SP处理方法的进步以及其制造过程。提供了所需的未来研究解决SP财产和性能差距的建议。©2023作者。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)下的开放访问文章。
印度阿南塔普尔,理学硕士,1997 年 6 月 - 1999 年 6 月,1999 年 7 月。印度阿南塔普尔 Sri Krishnadevaraya 大学高分子科学与技术专业,博士学位,2001 年 3 月 - 2005 年 3 月,2005 年 3 月。大学(及学院)任职情况:2013-2015 年助理教授(研究轨道),田纳西大学健康科学中心药学院药学系,美国孟菲斯 2015-2019 年。助理教授(终身制),田纳西大学健康科学中心药学院药学系,美国孟菲斯 2019-Pre 副教授(终身制),德克萨斯大学里奥格兰德河谷分校医学院免疫学和微生物学系,美国德克萨斯州爱丁堡 / 麦卡伦 实践 / 职业经历: 2011-2013 美国苏福尔斯桑福德研究中心癌症生物学研究中心研究员 2008-2011 美国苏福尔斯桑福德研究中心癌症生物学研究中心博士后研究员 2007-2008 美国俄亥俄州克利夫兰勒纳研究所 ND-20 生物医学工程系博士后研究员 2006-2007 美国奥马哈内布拉斯加大学医学中心药学系博士后研究员2001-2003 项目研究员,印度阿南塔普尔聚合物科学与技术系 资金:1R01CA206069-01(PI:Chauhan;Yallapu-Co-I) 2016 年 6 月 1 日至 2021 年 5 月 31 日 1.2-1.8 个月(CY)NIH-NCI R01 250,000 美元 开发针对胰腺癌的靶向纳米技术平台 开发针对胰腺癌的有效靶向治疗配方 重叠:无。 1R01CA199708-01A1(PI:Chauhan;Yallapu-Co-I)2016 年 6 月 1 日至 2021 年 5 月 31 日 1.2-1.8 个月(CY)NIH-NCI R01 250,000 美元 MUC13 靶向新型紫杉醇纳米颗粒制剂用于治疗胰腺癌,描绘针对胰腺癌的 MUC13 靶向治疗方法重叠:无。
抽象的量子机械方法构成了计算化学的基石,在原子量表上提供了对分子行为和特性的前所未有的见解。这些方法阐明了通过求解Schrödinger方程来理解各种化学系统至关重要的基本电子结构,能量和性能。在这些方法中,密度功能理论(DFT)在研究原子,分子和固体的电子特性方面具有多功能性,它植根于精确的Hohenberg-kohn定理和Kohn-Sham方程。本评论探讨了计算化学中量子机械方法的宽敞景观,突出了它们在推进科学理解和技术创新方面的关键作用。许多领域,包括材料科学,催化和药物开发,利用这些技术来增强分子结构,预测反应,模拟光谱特性并澄清溶剂化效应。量子化学现在可以借助高级技术(如释放后循环方法和时间依赖性的DFT)预测更多。这些技术为我们提供了有关分子如何移动以及电子如何激发的更多信息。分子动力学(MD)模拟通过显示分子如何随时间移动和相互作用,从而增加了量子力学方法。他们通过将理论上应该与实际发生的情况联系起来来实现这一目标。关键字:量子,机械方法,计算化学。添加基于结构的药物设计(SBDD)和材料建模等计算机程序显示了量子化学如何改变事物,加快发现过程并提高分子行为的准确性。光谱模拟和溶剂化研究有助于我们预测如何解释实验数据并确定环境如何影响分子的行为及其应用,从而使计算化学更有用。量子化学软件和高性能计算框架的持续演变使对高级计算工具的访问权限,从而促进了解决复杂科学挑战的协作和创新。随着量子能力的提高,未来有望在化学和跨学科领域进行更大的应用,推动材料设计,药物开发和环境可持续性的持续进展。