,尤其是识别软导管技术。[3,4]甘露和甘露的液体金属(LMS)引起了人们的关注。[5]利用其接近室温的液体 - 固体相变(t = 29.8°C)和较大的电导率(> 3×10 6 s m-1),使用了LMS,通常嵌入有机硅载体中,作为伸展的电导导体,以携带电力和信息或传输器具有多个功能。[5-10]由于其综合流变性,弹性地下的LMS尚未被广泛用于可靠,高性能,微型电路,这是由于开发与基于晶相的微技术相兼容的构图技术的挑战。[11] LMS在暴露于空气时形成薄(≈1–3 nm厚),表面固体氧化物皮肤。[12–14]氧化物平衡LMS的高表面张力并允许大多数表面润湿。这种现象是阻止当今LM电子技术的大型工业规模整合的主要阻碍因素之一。已经开发了几种技术来克服LM膜导体的生产性限制。[11,15,16]在一种方法中,LM图案是通过破裂氧化物皮肤,形成所需形状并通过氧化物皮肤再生而稳定的。3D和转移印刷技术依赖于这种氧化物皮肤稳定化来证明具有微观分辨率的痕迹。也证明了基于激光消融的类似方法,用于制造可扩展和高分辨率的LM网格。[17–20]但是,这种方法尚未被证明与大区块(> cm 2)电路的兼容,或者不能对LM Morphology提供足够的控制,因此无法保证高可扩展性(> 30%)。[21]激光微加工可以使高分子LM导体跟踪到4 µm线宽,但这种“串行”技术与大金属化密度绘制不相容。在另一种方法中,氧化物皮肤的生长要么通过真空处理下的加工或化学去除以允许在粘附层上润湿LM以增加与基材的亲和力。通过在金属润湿层上选择性电镀LMS来形成可拉伸(> 100%伸长)和狭窄(5 µm)图案的图案。[22]但是,大区域上的高分辨率电路尚未实现。
本研究报告了一种前所未有的现象,具有相似结构的水溶性聚合物混合物(注 10)通过两个连续的 LLPS 事件以同心模式分离,即液相中的第一个 LLPS 和固液界面处的第二个 LLPS(图 2,顶部)。这种有趣的分离是通过使用高浓度的高离子强度盐(例如硫酸铵)实现的。 硫酸铵因其对水溶性生物聚合物的有效和非破坏性的盐析而闻名。研究小组在研究分子量(MW)为5,000Da的染料封端PEG存在下蛋白质的盐析行为时发现了PEG的同心分离现象。一般来说,蛋白质很难盐析,因此本实验采用了高浓度的硫酸铵。将此溶液滴到玻璃板上,用共聚焦激光扫描显微镜(CLSM)观察时,发现了意想不到的现象:玻璃表面形成了无数发出黄绿色荧光的环。
Suwabun Chirachanchai 教授作为泰国政府派出的留学生来到日本,学习了日语后,于1982年进入东京学艺大学附属中学就读。 1985年通过普通入学考试考入大阪大学工学部,1989年毕业。后在工学研究科师从竹本喜一教授取得硕士学位,后在朱拉隆功大学石油化学研究科工作。次年回国师从竹本喜一教授,1995年取得工学博士学位。回国后,历任讲师、助教、副教授,2009年晋升为教授,并于2016年至2020年担任研究生院院长至今。我们通过众多国际会议、研讨会和讲座等学术交流活动积极参与持续的国际交流。他不仅活跃在泰国,还担任美国凯斯西储大学、广岛大学、比利时蒙斯大学的客座教授,以及NEDO Moonshot国际评估委员会委员,充分运用从小培养的英语能力,在国际上活跃。其发表的150多篇学术论文多篇发表于国际知名学术期刊,考虑到他任职时泰国高分子科学尚未扎根的状况,其学术贡献令人惊叹。在研究方面,我们专注并持续致力于环境友好的功能高分子材料的开发。他发现了一种独特的溶解方法(水溶性壳聚糖),该方法涉及与水溶性难溶的天然多糖壳聚糖形成离子复合物,该方法得到了许多研究人员的高度评价。 Chirachanchai 教授一直致力于通过增强可生物降解聚合物的功能性来开发环境友好的功能高分子材料,并报告了多种原创性和创新性的研究成果。在泰国,有效利用从蟹壳和虾壳中提取的甲壳素和壳聚糖是一个重要课题,但由于它们的水溶性差,因此仅限于在酸性水溶液或有机溶剂中进行化学反应。他发现缩合反应促进剂1-羟基苯并三唑与壳聚糖形成离子配合物,从而使其溶解于中性水溶液中,并证明了多种缩合反应可在一个步骤中实现。由此开创了“水溶性壳聚糖”这一新领域,并带动了多种高功能材料的诞生。此外,还开发了一种赋予聚醚醚酮质子可转移性的新型表面改性方法。
生物过滤是一种低成本的低能技术,它采用了多孔培养基的生物活化床来减少源水中溶解有机物(DOM)池的可生物降解部分,从而导致饮用水的产生。在生物滤池内不同床深度的微生物群落在降解和去除溶解有机碳(DOC)中起着至关重要的作用,最终影响了其性能。然而,居住在不同生物滤池深度的微生物群落组成与它们对各种DOC馏分的使用之间的关系仍然很少。为了解决这一知识差距,我们进行了一项实验研究,其中从上部(即前10厘米)和下部(即底部10厘米)的小型群落进行了30厘米长的实验室尺度生物滤器的部分。然后使用与生物滤器进水量相同的源水单独孵育10天。我们的研究表明,与顶级微生物社区相比,底部微生物群落的多样性较低,但其成员之间具有更高程度的互连网络。此外,我们在微生物群落的组成和网络结构之间建立了直接相关性,以及它们在DOM池中使用各种DOM化合物的能力。有趣的是,尽管在孵化开始时,与顶级社区相比,底部微生物社区仅占总细胞丰度的20%,但它使用了,因此从DOM池中删除了比顶级社区多的总DOC约60%。虽然两个群落都迅速利用了不稳定的碳分数,例如低分子 - 重量中性,但使用更多难治性的碳馏分,例如高分子重量腐殖质的腐殖质,平均分子量比CA的平均分子量更高。1451 g/mol,是底部微生物群落独有的。通过采用捕获微生物多样性的技术(即流式细胞术和16S rRNA扩增子测序),并考虑DOM的复杂性(即LC - OCD),我们的研究提供了微生物社区结构如何影响微生物介导的工程生产的重要过程。最后,我们的发现可以通过工程干预措施来改善生物滤器性能,从而塑造生物滤器微生物群落的组成,并增强其对DOM的利用率和去除,最尤其是更经典的谦卑和耐用性DOM -DOM AFTER。
抽象背景抗体 - 药物结合物是多种疾病的特殊且有用的治疗工具,特别是用于癌症治疗。我们先前表明,丝氨酸蛋白酶颗粒B(GRB),效应分子或T和B细胞与结合结构域的融合允许将细胞毒性有效载荷控制到靶细胞中。这些构建体的产生诱导了高分子聚集体的形成,并可能影响蛋白质的疗效和安全性。方法我们的实验室设计了一种新的FN14靶向融合构建体指定的GRB(C210A)-FC-IT4,其中包含改进的GRB有效载荷,以改善蛋白质生产和保留的生物学活性。我们评估了构建体的酶活性,以及体外的细胞毒性和内在化对靶细胞。我们还评估了体内药代动力学,功效和毒理学参数。结果GRB(C210A)-FC-IT4蛋白在针对FN14阳性人类癌细胞系进行测试时,在纳摩尔范围内表现出高亲和力和选择性细胞毒性。迅速内化到靶细胞,激活caspase级联反应并引起线粒体膜去极化。在小鼠中的药代动力学研究表明,GRB(C210A)-FC-IT4显示出具有快速初始清除率(T1/2α= 0.36小时)的血浆中的双指数清除率(T1/2α= 0.36小时),然后延长了末期末期 - 末期半寿命(T 1/2β= 35小时)。与单独使用媒介物治疗的对照组相比,对确定的皮下A549肺肿瘤建立的小鼠的治疗表现出令人印象深刻的长期肿瘤。带有MDA-MB-231的小鼠用媒介物或GRB(C210A)-FC-IT4构建体(QODX5)处理的MDA-MB-231原位肿瘤异种移植物显示出肿瘤的消退和长期(> 80天)抑制肿瘤生长。小鼠的GRB(C210A)-FC-IT4(100 mg/kg总剂量)的耐受性良好,导致肺癌患者衍生的异种移植模型的肿瘤负担显着减轻。毒性研究表明,治疗小鼠中天冬氨酸转移酶,丙氨酸转移酶或乳酸脱氢酶没有统计学上的显着变化。对经过治疗的小鼠的组织的组织病理学分析尚未证明任何与药物有关的变化。
目标:评估糖基化血红蛋白(HBA1C),禁食血糖和冠状动脉疾病(CAD)严重程度(通过语法得分测量)(经皮冠状动脉介入与出租车和心脏手术之间的协同作用)之间的相关性。语法评分是一种独特的解剖评分工具,可以评分冠状动脉疾病的复杂性。)接受型型经皮冠状动脉干预的糖尿病前患者。背景:许多报道说,糖尿病前期是一种微不足的糖代谢,与心血管疾病有着独立的关系,并且它反映了CAD的严重性和复杂性的升级。方法:这项横断面研究是对92名糖尿病前患者的样本进行的,该样本接受了国家心脏研究所心脏病学系(埃及)的心脏病学系(埃及)与心脏病学系的心脏病学部门合作,该研究期间在2022年5月至2023年7月的研究期间,并在20223年7月期间与包容性信行仪式。结果:平均血红蛋白(HB)为13.0±1.7,空腹血糖(FBS)为117.8±6.1,而平均HBA1C为6.1±0.2。研究患者中语法评分的中位数(IQR)为6.5(0 E 19)。据报道,在80.4%的患者中,较低的语法得分,中级评分为9.8%,据报道,研究患者的9.8%的评分为9.8%。疾病的数量(VD)和HBA1C,P小于0.001之间存在显着的正相关。此外,HB,FBS,HBA1C和语法得分P小于0.001之间存在显着的正相关。男性,吸烟者,高血压患者以及CAD P小于0.001的家族病史的男性,吸烟者,高血压患者的中位数较高。分数和年龄p大于0.001之间没有观察到显着的关系。语法预测因子的线性回归表明,VD的数量被认为是CAD严重程度的独立预测指标。二进制逻辑回归分析表明,VD的数量是糖尿病前期中级和高语法得分的独立风险因素,存在3 VD和4 VD的存在会增加获得中级和高语法得分的风险,并分别增加24.1和98.4倍。结论:在糖尿病前期,HB,FBS,HBA1C和语法评分之间存在很强的正相关性,而男性,吸烟者和高血压患者的得分较高。受影响的血管数量与HBA1C之间也有显着的关系。VD的数量是获得高分子分数的独立因素,也增加了CAD的严重程度。
摘要:可食用的灰色牡蛎蘑菇,胸膜sajor-caju,β(1,3),(1,6)葡聚糖具有广泛的生物学活性,包括抗炎性,抗炎症,抗微生物和抗氧化剂。然而,其生物学活性受到高分子重量产生的低水溶性的限制。我们先前的研究表明,使用HEVEAβ-1,3-葡萄糖酶同工酶对灰色牡蛎蘑菇β-葡聚糖进行酶水解,可获得较低的分子量和较高的水溶性,Pleurotus sajor-sajor-caju-caju葡萄糖醇乙醇(PS-GOS)。此外,PS-GOS可能通过增强成骨细胞 - 骨形成来减少骨质疏松症,而其对骨细胞 - 骨的吸收的影响仍然未知。因此,我们的研究调查了PS-GOS在核因子Kappa-B配体(RANKL)诱导的骨化前肿瘤生成264.7细胞中核因子Kappa-B配体(RANKL)诱导的破骨细胞发生上的调节活性和潜在机制。PS-GOS在RAW 264.7细胞上的细胞细胞毒性由3-(4,5-二甲基噻唑-2-基)确定-2,5-二苯基-2H-2H-四唑溴化物(MTT)测定法,其对骨酸磷酸磷酸磷酸化酶(Trapsantase)(Trappase)的影响及其对骨质分化的影响。另外,通过坑形成测定,检测到其对破骨细胞骨敏感能力的影响。通过定量逆转录酶聚合酶链反应(QRT-PCR),Western blot和免疫流效来评估破骨细胞生成相关的因子。这些发现表明PS-GOS可能是作为骨代谢疾病的有效天然剂而有益的。结果表明,PS-GOS是无毒的,并有明显地抑制成熟破骨细胞多核细胞的形成及其吸收活性,通过减少诱捕阳性细胞的数量和PIT形成区域的数量,以剂量依赖性方式。此外,PS-GOS还减轻了活化B细胞的核因子Kappa轻链增强剂的核因子p65(NFκB-P65)的表达及其随后的主骨细胞调节剂,包括活化的T细胞C1(NFATC1)的核因子和FOS Proto proto proto-cogen-(CFOS)通过NF-NF-κB-B-B-κB-B b b b b b b b b。此外,PS-GOS明显抑制了等级表达,它是许多与破骨构成相关的级联反应的初始发射器,并抑制了蛋白水解酶,包括TRAP,基质金属肽酶9(MMP-9)和Cathepsin K(CTK)。
简介:从无序的非生物系统到有组织的分子结构的转变对我们理解热力学提出了重大挑战。尽管第二定律规定熵普遍增加,但表现出高分子复杂性的局部区域(例如生命早期涉及的区域)表明某些环境可以保持持续的偏离平衡状态。揭示促成这些转变的物理条件和机制对于解释生命起源前化学的出现和更广泛的自组织系统现象至关重要。在这里,我们对纳米裂缝网络可能产生的自调节富含热水的环境和量子隧穿介导的有机物合成增加的潜力进行了初步评估。我们还提出了一个初步的理论框架,该框架结合了多种形式的熵,以开发一种方法来独立追踪不确定性和无序属性,这些属性可能会推动由无生源论所暗示的新兴复杂性。纳米裂缝中的热自调节:维持宜居性:在纳米级裂缝中,水的热导率偏离其本体值 0.6 Wm -1 K -1 ,在三个范围内表现出类似阈值的转变:60 °C 以下:在矿物表面附近形成以刚性氢键为特征的冰状层,降低至 0.2–0.4 Wm -1 K -1 。60–100 °C:这些刚性层的部分破坏和与矿物晶格的声子耦合增加升至 0.3–0.6 Wm -1 K -1 。在这个中间范围内,该系统实现了一种自我热调节或“优先稳定性”,因为增量加热仅破坏了氢键网络的一部分,同时保留了足够的结构以防止完全转变为纯声子主导的传导。 100 °C 以上:结构化水的分解导致主要由声子驱动的热传输,推高至 0.6 Wm -1 K -1 以上,并接近 150– 200 °C(1.5–2 eV)时的键降解阈值。减半会使温度减半和加倍。较低的温度会使区域更长时间保持高温,促进高活化能反应并稳定冰状网络。局部加热会破坏 H 键晶格,形成保持秩序的反馈回路。这些非平衡条件产生不同的温度-时间曲线,从而实现原本无法接近的途径。我们注意到,关于水在纳米级裂缝中降低的热导率(0.3–0.6 Wm -1 K -1 )、连续热模型的有效性以及在纳米尺度上水的导热系数降低(0.3–0.6 Wm -1 K -1 )仍然存在不确定性。
BME 5267 生物流体力学 MAP 2302, EML 3701, EML 4703 √ FA 3(3,0) EAS 5123 中级空气动力学 EAS 4143, (EML 5060) √ 偶尔 3(3,0) EAS 5211 气动弹性学 EAS 3101/EML 3701, EAS 4210/EML 4220 √ 偶尔 3(3,0) EAS 5315 火箭推进 EAS 4134/ EML 4703 √ 偶尔 3(3,0) EEE 5332C 薄膜技术 EEE 3350/ 同等学历 √ 偶尔 3(2,1) EEE 5352C 半导体材料与器件特性 EEE 3350/ CI √奇数 FA 3(2,3) EEE 5356C 固态器件制造 EEE 3350 √ FA/ SP 4(3,3) EEE 5378 CMOS 模拟和数字电路设计 EEE 4309C √ FA 3(3,0) EEE 5513 数字信号处理应用 EEL 4750 √ SP 3(3,0) EEE 5542 随机过程 I EEL 3552C, STA 3032 √ FA/ SP 3(3,0) EEE 5557 雷达系统简介 EEL 3552C √ SP 3(3,0) EEL 5173 线性系统理论 EEL 3657 √ SP 3(3,0) EEL 5245C 电力电子学 EEE 4309C √ FA 3(3,0) EEL 5437C 微波工程EEL 3470/ CI √ FA 4(3,3) EEL 5462C 天线分析与设计 EEL 3470/ 等效 √ 奇数 FA 3(3,1) EEL 5630 数字控制系统 EEL 3657 √ FA 3(3,0) EEL 5669 自主机器人系统 EEL 5173/ CI √ 奇数 FA 3(3,0) EEL 5722C 现场可编程门阵列 (FPGA) 设计 EEE 3342C √ 偶数 FA 3(3,3) EIN 5108 技术组织环境 研究生身份/ CI √ FA 3(3,0) EIN 5117 管理信息系统 I CI √ SP 3(3,0) EIN 5140 项目工程 研究生身份/ CI √ FA/SP 3(3,0) EIN 5248C人体工程学 CI √ FA 3(2,2) EIN 5251 可用性工程 STA 3032/ 同等 √ SP 3(3,0) EIN 5346 工程物流 ESI 5306/ ESI 4312 √ 偶尔 3(3,0) EMA 5060 高分子科学与工程 EGN 3365 √ 偶尔 3(3,0) EMA 5104 中间结构与材料属性 EGN 3365 √ FA 3(3,0) EMA 5106 冶金热力学 EGN 3365 √ 偶尔 3(3,0) EMA 5140 陶瓷材料概论 EGN 3365 √ 偶尔 3(3,0) EMA 5317 材料动力学 CI √ 偶尔3(3,0) 指数移动平均线5584 生物材料 EGN 3365 √ 偶数 SP 3(3,0) EMA 5610 激光材料加工 EGN 3343/ EMA 5106 / CI √ 偶尔 3(3,0) EML 5060 MAE 中的数学方法 MAP 2302 √ FA 3(3,0) EML 5152 中级传热 EML 4142, EML 5060 √ 偶尔 3(3,0) EML5228C 模态分析 EML 3303C, EML 5060 √ 偶尔 3(3,0) EML 5237 中级材料力学 EML 3500/ EAS 4200, EML 5060 √ FA 3(3,0) EML 5271 中级动力学 EGN 3321/ EML 3217 √ 偶尔 3(3,0) EML 5290 MEMS 与微机械加工简介 研究生身份/CI √ 零星 FA 3(3,0) EML 5311 系统控制 EML 4225C,(EML 5060) √ 偶尔 3(3,0) EML 5402 涡轮机械 EML3101,EML 4703/EAS 4134 √ 偶尔 3(3,0) EML 5456 可持续电力涡轮机 EML 5237 √ FA 3(3,0) EML 5546 复合材料工程设计 EML 5237 √ 偶尔 3(3,0) EML 5713 中级流体力学 EML 4703,(EML 5060) √ 偶尔 3(3,0)需缴纳研究生学费和费用(GPA ≥ 3。0 必修)本科生需要 Override 才能注册这些课程。未在此列表中列出的课程必须获得系副主任的批准。于 2022 年 8 月 22 日更新
为了加深成员与会议参与者之间的互动并确保积极的活动,电力和能源部(b)将举行2025师B会议,如下,并正在寻找演讲文件。不仅会员,而且还欢迎非会员宣布他们的公告。 日期:9月17日,星期三 - 2025年9月19日,星期五:Ryukyus Chihara校园1 Chihara,Nishihara-Cho,冲绳县903-0213 https:///www.u-ryukykyu.ac.ac.ac.jp/access/ uthere of covid-nime, 纸I:日语或英语纸,允许全面而密集的演示文稿,最多4页或更少,14页或更少。但是,如果页数超过6页,则作者将负责超额费用(5,000日元/页)。唯一的演示格式是“口头表现”。 如果您年龄不超过29岁,并且想介绍一张纸I,请在申请时声明这一点。 但是,根据出现的海报数量,我们可能无法满足您的意愿。 论文II:这是日语或英语论文,重点是新闻,新产品,主题等,旨在快速发布和引入结果,最多有两页。格式是“口头表现”和“海报陈述”。申请时请选择一个。但是,在某些情况下,我们无法满足您的意愿。 论文I和II涵盖的主要技术领域如下。 (A) Planning, operation, analysis and control of electricity grids (Grid planning, operation, demand forecast, supply and demand control, EMS, DR, Grid stability, resilience, BCP, Grid optimization, DC transmission, HVDC, Power electronic applications, IBR, GFL, GFM, renewable energy, power storage, asset management, EAM, cybersecurity) (B) Electricity liberalization (Electric electricity liberalization, energy economy, electricity market and economy, sector coupling, VPP, EMS, DR, DER, TSO, DSO) (C) Distributed power supply and new power supply systems (smart grid, smart community, microgrid, wind power generation, solar power generation, GFL, GFM, electric vehicles, power storage, heat pumps) (D) Power equipment (电力电缆,变压器,断路器,GIS和替代气体,电源分配设备,绝缘体和聚合物绝缘子,间接费用传播,转换器和转换站,变电站)(E)高压和绝缘物联网和ICT,磁性环境,EMC,IEMI,EMP和大麻,新的电和能量利用技术,超导性,水力发电发电,热发电,核发电,核电发电,核融合发电,风力涡轮机和风力发电,风力发电,太阳能生产,氢生产和电力储存,电力储存)呈现纸张I:或30分钟(包括30分钟)(包括30分钟)。此外,我们将确保可以在演示时间内进行足够的讨论。