nils Straub,Wiebke Herzberg,Anna Dittmann,Elke Lorenz iea-Methods的微小比例预测和他们的无人可乐Roskilde,2024-04-10 www.ise.fraunhofer.de
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月10日发布。 https://doi.org/10.1101/2022.11.07.515511 doi:Biorxiv Preprint
从人类大脑活动中重建视觉体验提供了一种独特的方式来理解大脑如何表征世界,并解释计算机视觉模型和我们的视觉系统之间的联系。虽然深度生成模型最近已被用于这项任务,但重建具有高语义保真度的真实图像仍然是一个具有挑战性的问题。在这里,我们提出了一种基于扩散模型 (DM) 的新方法来重建通过功能性磁共振成像 (fMRI) 获得的人脑活动图像。更具体地说,我们依赖于称为稳定扩散的潜在扩散模型 (LDM)。该模型降低了 DM 的计算成本,同时保留了其高生成性能。我们还通过研究 LDM 的不同组成部分(例如图像 Z 的潜在向量、条件输入 C 和去噪 U-Net 的不同元素)与不同大脑功能的关系来描述 LDM 的内部机制。我们证明了我们提出的方法可以重建高分辨率图像,保真度高,直
我们测试了图像纹理作为新墨西哥州半干旱景观中鸟类物种丰富度的预测指标。鸟类物种丰富度是通过 1996 年至 1998 年在 42 个地块(每个 108 公顷)内的 12 个点进行的 10 分钟点计数总结出来的。我们在 1996 年获取的一组数字正射影像上,在八种不同的窗口大小中计算了 14 个一阶和二阶纹理测量值。对于 42 个地块中的每一个,我们都总结了多个窗口大小内每个纹理值的平均值和标准差。使用线性回归模型评估了图像纹理和平均鸟类物种丰富度之间的关系。单一图像纹理测量(例如标准差)可以描述物种丰富度高达 57% 的变异性。结合多种纹理测量或将海拔与单一纹理测量相结合可以描述鸟类物种丰富度高达 63% 的变异性。结合两种纹理测量和粗糙栖息地类型的模型可以描述鸟类物种丰富度 76% 的变异性。这些结果表明,图像纹理分析是一种非常有前途的工具,可用于描述半干旱生态系统的栖息地结构和预测物种丰富度模式。与依赖分类图像的方法相比,该方法具有多项优势,包括成本效益、纳入栖息地内植被变异性以及消除与边界划分相关的错误。© 2006 Elsevier Inc. 保留所有权利。
排干的湿地可能成为温室气体排放的主要来源,但这些湿地的排水网络大部分都未绘制地图,需要更好的地图来帮助森林生产并更好地了解气候后果。我们开发了一种在基于 LiDAR 扫描的高分辨率数字高程模型中检测沟渠的方法。使用数字地形指数的阈值方法可用于检测沟渠。但是,单个阈值通常无法捕捉景观的变化,并且会产生许多误报和漏报。我们假设,通过使用监督学习结合数字地形指数,我们可以在景观尺度上改善沟渠检测。除了数字地形指数之外,还可以通过转换数据以包含相邻单元来生成其他特征,以便更好地预测沟渠。使用随机森林分类器来定位沟渠,并对其概率输出进行处理以消除噪音,然后进行二值化以产生最终的沟渠预测。评估图之间的 Cohen's Kappa 指数的置信区间范围为 [0.655 , 0.781],置信度为 95%。研究表明,使用机器学习结合一系列数字地形指数的信息,可以提供一种有效的景观尺度自动沟渠检测技术,有助于实际的森林管理和应对气候变化。
摘要。分散到地球大气中的航空排放会影响气候和空气污染,由于异质飞机活动而具有显着的时空变化。在本文中,我们使用源自自动依赖的监视 - 路广播(ADS-B)遥测和2019 - 2021年重新分析天气数据来开发基于ADS-B(GAIA)的全球航空排放库存的历史轨迹。在2019年,使用283 tg的燃料共同行驶了610亿公里,导致CO 2,无X和非挥发性颗粒物(NVPM)质量(NVPM)质量(NVPM),分别为893 TG,4.49 TG,21.4 GG和21.4 GG和2.8×10 26。全球对COVID-19的反应导致年度距离距离自身和CO 2的减少,而2020年无X发射( - 相对于2019年,分别为 - 43%, - 48%和 - 50%)和2021(分别为 - 31%, - 41%和 - 41%和 - 41%和 - 41%和 - 41%和 - 43%),具有明显的区域性变异性。持续时间<3 h的短期空间占所有阶段的83%,但仅占2019年CO 2的35%,而长期持续时间> 6 h(占所有(所有(占所有(占))的持续时间为5%),持续时间为43%,占没有X X发射的49%的43%。在全球范围内,实际上的轨迹平均比原点和目的地机场之间的大圆路径高5%,但这会随区域和飞行距离而变化。对伦敦和新加坡之间8705个独特的战斗的评估显示出巨大的变化,在轨迹轨迹,燃料消耗和排放指数中。Gaia捕获了航空活动和排放的时空分布,并提供在未来的研究中使用,以评估全球航空引起的负面外部性。
地图是评估土壤和生态杂质的过程和危害,水文建模以及自然资源和土地管理的重要工具。基于现场调查或航空照片的映射土地形式的传统技术可能是时间和劳动密集型,强调了基于遥感产品的自动或半自动方法的重要性。此外,时间密集的手动标记也可以是主观的,而不是对地形的客观识别。在这里,我们实施了一种客观的方法,该方法将随机的森林机器学习算法应用于一组观察到的地形数据和1M水平分辨率裸露的数字高程模型(DEM),它是从空气中的光检测和范围数据(LIDAR)数据开发的,以快速映射丘陵地面的各种地面地面。地面分类包括高地高原,山脊,凸面,平面斜坡,凹陷坡,溪流通道和山谷底部,横跨俄克拉荷马州东北部俄克拉群岛的Ozark山脉的400公里2丘陵景观。我们使用了4200个地面观测值(每个地形600个)和八个从随机森林算法中的2 m,5 m和10 m分辨率LIDAR DEM得出的地形指数,以开发2 m,5 m和10 m分辨率地分辨率地面地面模型。我们通过比较观察到的地貌与建模地面的地图来测试DEM分辨率在映射地图中的有效性。结果表明,当协变量以2 m的分辨率分辨率为〜89%时,该方法绘制了约84%的观察到的地形,分辨率为10 m。使用这种方法开发的地图图具有多种潜在应用。然而,预测的地图显示,2 m分辨率的协变量在捕获准确的地形边界和小型地面的细节(例如溪流通道和山脊)方面表现更好。与使用空中图像和现场观测值相比,此处介绍的方法大大减少了绘制地图的时间,并允许掺入各种各样的协变量。它可以用于水文建模,自然资源管理,并在丘陵景观中表征土壤地球形过程和危害。
因此,标准空中三角测量方法通常无法处理使用 UAV Haala 2012 获取的图像。现在有各种开源和商业密集立体匹配工具可用于应对这些挑战。采用源自计算机视觉并广泛用于近景摄影测量或地面摄影的算法(特征检测 SIFT、SfM)(Lowe 2004、Bryson 2010、Hauagge 2012)。以高度自动化的方式,可以估计相机几何形状并从一组重叠图像中计算 3D 模型,且不受尺度、方向、失真和照明变化的影响(Neitzel 2011、Turner 2012)。图像匹配得到的点云可以以与机载或地面激光扫描得到的点云类似的方式进行进一步处理,并且通常与激光扫描数据相结合。
排干的湿地是温室气体排放的主要来源,但这些湿地的排水网络大部分都未绘制地图,需要更好的地图来帮助森林生产并更好地了解气候后果。我们开发了一种在基于 LiDAR 扫描的高分辨率数字高程模型中检测沟渠的方法。使用数字地形指数的阈值方法可用于检测沟渠。但是,单一阈值通常无法捕捉景观的变化,并且会产生许多假阳性和假阴性。我们假设,通过使用监督学习结合数字地形指数,我们可以在景观尺度上改善沟渠检测。除了数字地形指数外,还可以通过转换数据以包含相邻单元来生成其他特征,以便更好地预测沟渠。随机森林分类器用于定位沟渠,并处理其概率输出以消除噪声,并进行二值化以产生最终的沟渠预测。评估图之间的 Cohen's Kappa 指数的置信区间为 [0.655 , 0.781],置信度为 95%。研究表明,使用机器学习结合一系列数字地形指数的信息,可以提供一种有效的景观尺度自动沟渠检测技术,有助于实际的森林管理和应对气候变化。