预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2025年1月19日发布。 https://doi.org/10.1101/2025.01.15.633177 doi:biorxiv preprint
摘要 自从实验证实行星、卫星和行星际介质中存在大量复杂的有机化合物以来,对高效仪器进行明确的太阳系成分原位分析的科学需求日益增加。新的实验数据将揭示太阳系的化学历史和外星有机化合物的可能形成机制。基于空间级 Orbitrap™ 的高分辨率质谱仪将允许获取所需的数据。在本研究项目范围内,对 CosmOrbitrap 项目内开发的 Lab-CosmOrbitrap 和 OLYMPIA 质谱分析仪进行了优化。已经开发并评估了为未来空间级仪器提出的新采样系统和电离机制。测量了当前设计的空间仪器(CRATER、CORALS 和 HANKA)所需的固体(真实的月球碎片)和气体样品(He、C 2 H 4 、N 2 和 CO)的实验校准数据。
原始生殖细胞(PGC)是配子的胚胎前体。在小鼠和大鼠中,PGC可以通过形成胚胎生殖细胞(EGC)轻松地在体外获得多能性。迄今为止,尽管人类PGC(HPGC)在生殖细胞肿瘤发生的背景下很容易经历多能转化,但在人类中尚未建立可比的体外系统。在这里,我们报告说,HPGC样细胞(HPGCLC)在暴露于先前用于得出小鼠EGC的相同感应信号后经历人类胚胎类细胞(HEGCLC)。这种定义的无馈物培养系统允许有效地推导人EGCLC,可以在标准的人类多能干细胞培养基中扩展和维持。HEGCLC在转录上与人类多能干细胞(HPSC)相似,并且可以区分所有三个细菌层,并再次引起PGCLC,证明了多能状态的互助性。这在表观遗传水平上也很明显,因为在HPGCLC中发生的初始DNA脱甲基化在HEGCLC中很大程度上逆转,将DNA甲基恢复到HPSC中观察到的水平。这种新的体外模型捕获了从多能干细胞状态到生殖细胞身份并再次返回的过渡,因此代表了一个高度可牵引的系统,用于研究多能和表观遗传转变,包括在人类生殖细胞肿瘤发生过程中发生的多能和表观遗传转变。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年1月14日发布。 https://doi.org/10.1101/2025.01.09.632261 doi:Biorxiv Preprint
固态光化学描述了对多种工业的重要性驱动反应的广泛。紫外线固化的聚合已在生产中司空见惯,用于打印,涂料和添加剂制造。1光降解是食品科学,药物,聚合物,太阳能电池和空间材料的障碍。2 - 5光电半导体被用作异质光催化剂的异质光催化剂,以提高各种反应的效率,6长期用作光发射二极管和光伏特细胞。7 - 9这些应用都是一个积极的科学研究领域,因为社区正在寻找更绿色的过程和能源解决方案。光化学在光合作用,皮肤损伤和视力等生物系统中也很普遍。10
1环境系统科学系,陆地生态系统研究所,苏黎世,苏黎世8092,瑞士(Mirela.beloiu@usys.ethz.ethz.ch),(zhongyu.xia@usysys.ethz.ethz.ch) (yach@ign.ku.dk)3森林动态,瑞士联邦森林,雪和景观研究WSL,瑞士8903 Birmensdorf(arthur.gessler@wsl.ch),(Nataliia.hearush@rearush@wsl.ch) (teja.kattenborn@geosense.uni-freiburg.de)5州库汉大学的测量,地图和遥感信息工程主要实验室,挪威(Stefano.puliti@nibio.no)的生物经济研究(NIBIO)国家森林清单8遥远感应小组,瑞士联邦森林,雪和景观研究WSL,8903 Birmensdorf,瑞士Birmensdorf,瑞士,瑞士,lars.waser@waser@waser@wasl.wsl.ch nervection@@@@
Wang,Y。等,中国有症状的颅内大动脉狭窄和闭塞的患病率和结局:中国颅内动脉粥样硬化(CICAS)研究。中风,2014年。45(3):663-9。Lange,M.C。等人,在缺血性中风的不同亚型中的中风复发。颅内疾病的重要性。arq neuropsiquiatr,2018年。76(10):649-653。
项目的目标和方法区域海洋和天气预报对于管理经济和保护我们沿海和开放水域的海洋生物至关重要。预测诸如海洋热浪和风暴之类的恶劣天气事件尤其重要,因为它们可能会严重影响人类的活动和生态系统,而对后者的不确定性很大。例如,天气预报(和气候预测)假定海洋颜色是固定的。然而,卫星观察结果表明,由于浮游植物活动,海洋颜色在西北欧洲架子上差异很大。Skákala等。(2022)表明,由于浮游植物而改变海洋颜色的考虑,会显着影响春季的海面变暖:在浮游植物的盛开期间,光被困在靠近地面,增加了近乎表面的变暖并增加了混合层深度。这种效果然后以浮游植物的形式反馈,将其开花前进了几天。在极端热量事件中,影响可能会明显更高。
然而,随着这些加速fMRI获取的最新进展[3,4],收购中保存的时间和复杂性已转移到图像重建中。目前,即使在社区中已经开发了现代变异压缩感(CS)重建技术,并且在我们的PYSAP软件[5]中可供选择(请参阅其fMRI 1的插件),但完全重建典型的4D(3D+时间)序列所需的时间预算是100个高分辨率FMRI FMRI FOLUMES架构的典型预算。为了加快这项任务,存在几种竞争方法,要么平行于多个GPU上连续的fMRI体积的重建,要么依靠深度学习在测试时本质上分解MR图像重建的数值复杂性。该博士学位论文将探索第二大道。
对组织培养物,尤其是脑器官的分析需要复杂的整合和协调多种技术以监测和测量。我们已经开发了一个自动化的研究平台,可实现独立设备,以实现以反馈驱动的细胞培养研究的协作目标。我们的方法可以在各种感应和驱动设备之间的物联网(IoT)体系结构中进行连续,交流,非侵入性交互,从而确切地控制了体外生物学实验的时间。框架整合了微流体,电生理学和成像装置,以维持脑皮质器官,同时测量其神经元活性。类器官是用定制的3D打印室进行培养的,并固定在商业微电极阵列上。使用可授权的微流体泵实现周期性喂养。我们开发了一种计算机视觉量估计器,用作反馈,以纠正媒体喂养/抽吸周期中微流体灌注的偏差。我们通过一组为7天的小鼠大脑皮层器官进行了验证,比较了手动和自动化方案。在整个实验过程中维持鲁棒的神经活动时,对自动化方案进行了验证。自动化系统启用了7天研究的每小时电子生理记录。通过高频记录揭示了每个样本的中位神经单位射击率都会提高和器官射击率的动态模式。令人惊讶的是,进食不会影响率。此外,在录制过程中进行媒体交换表明对发射率没有急性影响,从而使该自动化平台用于试剂筛查研究。